A NOTE ON THE CUP PRODUCT FOR PRO-\(p\) GROUPS

TILMANN WÜRFEL

(Communicated by Bhama Srinivasan)

ABSTRACT. Let \(G\) be a pro-\(p\) group and \(g \in H^1(G)\). We give a group-theoretic description of the kernel of the cup product \(-\cup g: H^1(G) \to H^2(G)\).

In this note we exhibit a connection between the cup product \(H^1(G) \times H^1(G) \to H^2(G)\) for a pro-\(p\) group \(G\) and certain subgroups of its Frattini group \(G^*\). A typical result is the following (Corollary 1): If \(S\) and \(T\) are two different maximal subgroups of \(G\), then \(H^1(G/S) \cup H^1(G/T) = 0\) in \(H^2(G)\) if and only if \(S^*T^* \neq G^*\). We actually compute the annihilator of \(H^1(G/S)\), with respect to the cup product, as \(H^1(G/\tilde{S})\) where \(\tilde{S}\) is determined by certain commutator conditions (Proposition 1).

We use standard notations. The basic facts about pro-\(p\) groups and their cohomology used here can be found in [1]. In particular, \(p\) always denotes a prime, \(G_i\) is the descending central series of a pro-\(p\) group \(G\), \(G^* = GPG_2\), \(H^1(G) = H^1(G, \mathbb{Z}/(p))\), \([x, y] = x^{-1}y^{-1}xy\), and \(\langle \cdots \rangle\) denotes closed subgroups.

PROPOSITION 1. Let \(G\) be a pro-\(p\) group and \(S\) a maximal subgroup of \(G\). Fix an element \(g \in H^1(G)\) such that \(S = \text{Ker}(g)\) and let \(A_S = \{f \in H^1(G) \mid f \cup g = 0\}\). Denote by \(\tilde{S}\) the subgroup \(S^*(G^p)G_3\) if \(p\) is odd, or \(S^*G_2\) if \(p = 2\). Then \(A_S = H^1(G/\tilde{S})\), where \(\tilde{S} = \{s \in S \mid [G, s] \subset \tilde{S}\}\) if \(p\) is odd or if \(p = 2\) and \(S^*G_2 \neq G^*\), and \(\tilde{S} = \{x \in G \mid [G, x] \subset \tilde{S}\}\) if \(p = 2\) and \(S^*G_2 = G^*\).

The proof will follow from Proposition 2. First, we need some information about certain maximal subgroups of the Frattini group.

LEMMA. Let \(G\) be a pro-\(p\) group and \(S \leq G\) a maximal subgroup.

(a) If \(T \leq G\) is a maximal subgroup different from \(S\), then \(S^*T^*\) is maximal in or equal to \(G^*\) and contains \(G_3\). If \(p\) is odd, then \(G^p \subset S^*T^*\). If \(p = 2\) and \(S^*T^* \neq G^*\), then \(G_2 \not\leq S^*T^*\).

(b) Let \(p\) be odd. If \(W \leq G^*\) is a maximal subgroup containing \(S^*\langle G^p\rangle G_3\), then there exists a maximal \(T \leq G\) such that \(T \neq S\) and \(W = S^*T^*\).

(c) Let \(p = 2\). Every maximal subgroup \(W \leq G^*\) such that \(S^*G_3 \leq W\) and \(G_2 \not\leq W\) is of the form \(W = S^*T^*\) with some maximal \(T \leq G\) different from \(S\).

(d) \(S^*G_2\) is maximal in or equal to \(G^*\); if \(p = 2\), then this depends on whether or not \(g \cup g\) is zero where \(g \in H^1(G)\) with \(\text{Ker}(g) = S\).

Received by the editors March 26, 1986 and, in revised form, December 18, 1986.
1980 Mathematics Subject Classification (1985 Revision). Primary 20E18, 20J05.
Proof. Everything follows from the congruence (cf. [1, Proposition 5])

\[(st)^p \equiv s^pt^p[t, s]^{[p]} \mod (G^*)^p[G^*, G],\]

where \([G^*, G] = (G_2)^pG_3.\)

(a) To see that \(G_3 \leq S^*T^*,\) let \(G = G/S^*T^*.\) Since \(G = ST,\) we can write \(G = \overline{G} = S^*T^*\) with \(S, T^*\) abelian and normal in \(G.\) So \(G_2 = [S, T] \leq S \cap T\) which is contained in the center of \(G.\) Hence \(G_2 = 1.\)

Now pick an element \(t \in T \setminus S\) and define the map \(k: G \to G^*/S^*T^*\) by \(k(x) = [t, x].\) Since \(G_3 \leq S^*T^*,\) \(k\) is homomorphism with \(T \leq \text{Ker}(k).\) If \(p\) is odd, then \((1)\) yields \(G^p \subseteq S^*T^*.\) Since \(G = \langle t \rangle S,\) we can write \(G_2 = [G, S] = [t, S]G_2G_3\) which implies that \(k\) is surjective. So \(S^*T^*\) is maximal in or equal to \(G^*\) if \(p\) is odd. If \(p = 2,\) surjectivity of \(k\) follows from the congruence \((ta)^2 \equiv t^2a^2[s, t^a] \equiv [t, s^{-a}] \mod S^*T^*.\) Still in the case \(p = 2,\) assume that \(G_2 \leq S^*T^*.\) Then the congruence \((st)^2 \equiv s^2t^2[t, s] \equiv 1 \mod S^*T^*\) shows that \(S^*T^* = G^*.\)

(b) Since \(G^p \subseteq W, G_2 = [G, S] \not\subseteq W\) and so there is a \(t \in G\) with \([t, S] \not\subseteq W.\) Then \(t \not\in S\) and the map \(k: G \to G^*/W\) with \(k(x) = [t, x]\) is an epimorphism as in part (a) of the proof. The subgroup \(T = \text{Ker}(k)\) is maximal in \(G\) and different from \(S.\) Using \(T = \langle t \rangle (T \cap S)\) we deduce that \(T_2 \leq W,\) so \(S^*T^* = W\) by (a).

(c) As in the proof of (b) there is an element \(u \in G\) so that \([u, S] \not\subseteq W.\) The homomorphism \(k: G \to G^*/W,\) defined by \(k(x) = [u, x]\), is then surjective on \(S\) already. So there is an element \(s \in S\) with \([u, s] \equiv u^{-2} \mod W.\) Let \(t = su.\) We then have \(t^2 \equiv s^2u^2[u, s] \equiv 1 \mod W\) by \((1)\) and because \(G_3 \leq W.\)

The modified homomorphism \(\tilde{k}: G \to G^*/W\) with \(\tilde{k}(x) = [t, x]\) now furnishes the required maximal subgroup \(T = \text{Ker}(k)\) of \(G.\) Indeed, for \(y \in S\) we have \([t, y] = [s, y][s, y], u[u, y] \equiv [u, y] \mod S_2,\) hence \(\tilde{k}\) and \(k\) coincide on \(S, t \not\subseteq S,\) and \(k\) is surjective. It remains to verify that \(T^2 \subseteq W.\) Write \(v = u \in T\) as \(v = t^ay\) with \(y \in T \cap S.\) Then \(v^2 \equiv t^{2a}y^2[y, t^a] \equiv [t, y^{-a}] \equiv 1 \mod W.\)

(d) The assignment \(x \mapsto x^p\) induces an epimorphism \(G \to G^*/S^*G_2\) whose kernel contains \(S.\) To prove the second statement, let \(p = 2\) and consider the five term cohomology sequence associated with the group extension \(1 \to S \to G \to G \to 1\) where \(\overline{G} = G/S,\) together with the respective cup product homomorphisms \(\cup_G\) and \(\cup_{\overline{G}}:\n\]

\[
\begin{array}{cccccc}
H^1(G) & \rightarrow & H^1(S) \overline{G} & \rightarrow & H^2(\overline{G}) & \rightarrow & H^2(G) \\
\cup_{\overline{G}} & & & & & & \cup_G \\
H^1(\overline{G}) \otimes^2 & \rightarrow & H^1(G) \otimes^2
\end{array}
\]

Since \(H^2(\overline{G}) = \mathbb{Z}/(2)\) and \(\cup_{\overline{G}}\) is an isomorphism, we see that \(g \cup_G g = 0\) if and only if the restriction \(r\) is not surjective which in turn is equivalent to \(G^* \neq S^*G_2.\)

Proposition 2. Using the notation of Proposition 1, there is an exact sequence induced by the differential

\[0 \to K_S \to A_S \xrightarrow{d} H^1(G^*/\overline{S}) \to 0,\]

where \(K_S = H^1(G/S)\) if \(p\) is odd, and \(K_S = 0\) if \(p = 2.\)

Proof. We begin by constructing the homomorphism \(d: A_S \to H^1(G^*).\) If \(f \in A_S,\) then there is a continuous map \(d_f: G \to \mathbb{Z}/(p)\) such that

\[(2) \quad f(x)g(y) = d_f(x) + d_f(y) - d_f(xy) \quad \text{for all } x, y \in G.\]
It follows that \(d_f \) is multiplicative on \(S \) as well as on \(\text{Ker}(f) \). So, in particular, the restricted map \(d_f |_{G^*} \) lies in \(H^1(G^*) \). If \(d_f \) is another map satisfying (2), then \(d_f - \tilde{d}_f \) is in \(H^1(G) \) and hence vanishes on \(G^* \). We can thus define the map \(d \) by setting \(d(f) = d_f |_{G^*} \). By the linearity of (2), \(d \) is a homomorphism.

We show next that \(\text{Ker}(d) \subset H^1(G/S) \). Assume \(d(f) = 0 \), i.e., \(d_f(G^*) = 0 \). Since \(d_f |_S \in H^1(S) \), there is then a map \(c \in H^1(G) \) such that \(c |_S = d_f |_S \). The modified map \(\tilde{d}_f = d_f - c \) satisfies (2) and vanishes on \(S \). So we may assume that \(d_f(S) = 0 \). We want to show that \(f(S) = 0 \). To this end, pick some \(s \in S \) and let \(z \in G \) be such that \(g(z) = 1 \in \mathbb{Z}/(p) \). Then, by (2), \(f(s) = d_f(z) - d_f(sz) \) and also \(d_f(sz) = d_f(z) \). Hence \(f(s) = 0 \).

If \(p \) is odd, then the formula \(g(x)g(y) = \frac{1}{2}(g(xy)^2 - g(x)^2 - g(y)^2) \) shows that \(d(g) = 0 \). Hence \(\text{Ker}(d) = H^1(G/S) \) in this case.

Let \(p = 2 \). If \(g \cup g = 0 \), then \(H^1(G/S) \cap A_S = 0 \) and so \(\text{Ker}(d) = 0 \) by the above. If \(g \cup g = 0 \), then (2) implies that \(g(x) = g(x)^2 = d_g(x^2) \) for all \(x \in G \). But \(G^* = (G^2) \) in this case (by (1)), hence \(d(g) \neq 0 \) and \(\text{Ker}(d) = 0 \).

To see that \(d \) actually lands in \(H^1(G^*/S) \), let \(f \in A_S \setminus \text{Ker}(f) \) and put \(T = \text{Ker}(f) \). Then \(d_f(S^*T^*) = 0 \). If \(T \neq S \), then \(S \leq S^*T^* \) by (a) of the Lemma. If \(T = S \), then \(p = 2 \) and we may assume \(f = g \). Thus \(g \cup g = 0 \) and (2) implies that \(d_g(xy) = d_g(yx) \) for all \(x, y \in G \). Since \(d_g |_S \) is a homomorphism, it follows that \(d_g([s,x]) = d_g(s^{-1}) + d_g(st) = 0 \) for all \(s \in S, x \in G \). Hence \(d_g(G^2) = 0 \) and, in particular,

\[
(3) \quad d_g(\tilde{S}) = 0.
\]

To show that \(d(A_S) = H^1(G^* \tilde{S}) \), we deal with odd \(p \) first. Let \(0 \neq \varphi \in H^1(G^*) \) be such that \(\varphi(\tilde{S}) = 0 \). We want to produce an \(f \in H^1(G) \) such that \(f \cup g = 0 \) and \(d(f) = \varphi \). Let \(z \in G \) be such that \(g(z) = 1 \) and define \(f \) by \(f(x) = \varphi([z,x]) \). Then \(f \in H^1(G) \) because \(G_3 \leq \tilde{S} \). Let \(\theta = \sigma \pi \) where \(\pi: G \to G/S \) is the natural map and \(\sigma: G/S = \langle \tilde{z} \rangle \to G \) is the section defined by \(\sigma(\tilde{z}^i) = z^i \) for \(i = 1, \ldots, p - 1 \). Since \(S/\tilde{S} \) is \(p \)-elementary, we may assume that \(\varphi \) is actually in \(H^1(S) \), and can thus define a continuous map \(c: G \to \mathbb{Z}/(p) \) by setting \(c(x) = \varphi(\theta(x)^{-1}x) \). Then \(c(xs) = c(x) + \varphi(s) \) for all \(x \in G, s \in S \). So \(c |_{G^*} = \varphi \). We want to show that \(f(x)g(y) = c(x) + c(y) - c(xy) \) for all \(x, y \in G \). Write \(x = z^ir \) and \(y = z^js \) where \(0 \leq i, j \leq p - 1 \) and \(r, s \in S \). Then \(f(x)g(y) = jf(x) \) and

\[
c(x) + c(y) - c(xy) = \varphi(r) + \varphi(s) - c(z^irz^j) - \varphi(s) = \varphi(r) - c(z^irz^j).
\]

Write \(i + j = ap + m \) with \(0 \leq m \leq p - 1 \). Then \(z^irz^j = z^mz^{ap}r^mz^l \) and, since \(\varphi(z^p) = 0 \), \(c(z^irz^j) = \varphi(r) + \varphi([r,z]) = \varphi(r) - jf(r) \) which is what we need because \(f(r) = f(x) \).

To end the proof, let \(p = 2 \) and let \(\varphi \) be as above. If \(G_2 \notin \text{Ker}(\varphi) \), then, by (c) of the Lemma, \(\text{Ker}(\varphi) = T^*S^* \) with some maximal \(T \leq G \) different from \(S \). So there is an element \(z \in T \) such that \(g(z) = 1 \). Then \(\varphi(z^2) = 0 \) and we can proceed as above. If \(G_2 \leq \text{Ker}(\varphi) \), then \(\text{Ker}(\varphi) = S^*G_2 \) and \(g \cup g = 0 \) by (d) of the Lemma. In this case, by (3), we have \(d_g(\tilde{S}) = 0 \). Since \(d_g(G^*) \neq 0 \), it follows that \(d_g |_{G^*} = \varphi \). □
Corollary 1. Let G be a pro-p group and $f, g \in H^1(G)$ be linearly independent with $T = \text{Ker}(f)$, $S = \text{Ker}(g)$. Then $f \cup g = 0$ if and only if $S^*T^* \neq G^*$. Hence $f \cup g \neq 0$ if G is abelian.

Proof. $S \neq T$ by assumption. If $f \cup g = 0$, then, by Proposition 2, $\varphi = d(f) \neq 0$. Since $\varphi(S^*T^*) = 0$, we have that $S^*T^* \neq G^*$. Conversely, if this latter condition holds, then there is a nonzero $\varphi \in H^1(G^*)$ with $\varphi(S^*T^*) = 0$. If $p = 2$, then $G_2 \notin \text{Ker}(\varphi)$ by (a) of the Lemma. Define $\tilde{f} \in H^1(G)$ by $\tilde{f}(x) = \varphi([z, x])$ where $z \in T$ is such that $g(z) = 1$. Then $\tilde{f}(T) = 0$, so $\tilde{f} = af$ with some $a \in \mathbb{Z}/(p)$. By the proof of Proposition 2, we have $f \cup g = 0$ and $d(f) = \varphi \neq 0$. Hence $a \neq 0$ and $f \cup g = 0$. \qed

Corollary 2. Let G be a pro-p group of finite rank with minimal pro-p free presentation $1 \rightarrow R \rightarrow F \xrightarrow{\pi} G \rightarrow 0$. Let $S \leq G$ be a maximal subgroup and put $U = \pi_1(S)$. Then $H^1(G/S)$ is contained in the radical of the cup product $H^1(G) \times H^1(G) \rightarrow H^2(G)$ if and only if $R \leq U^*(F^3)$ if p is odd, or $R \leq U^*F^3$ if $p = 2$.

Proof. Define \tilde{S} and \tilde{U} as in Proposition 1. Then π induces an epimorphism $\tilde{\pi}: F^*/\tilde{U} \rightarrow G^*/\tilde{S}$ whose kernel is $R\tilde{U}/\tilde{U}$. Therefore, $R \leq \tilde{U}$ if and only if the groups F^*/\tilde{U} and G^*/\tilde{S} are of the same rank. Let n denote the rank of G and F. Since $H^2(F) = 0$, Proposition 2 shows that the rank of F^*/\tilde{U} is $n - 1$ if p is odd and n if $p = 2$. On the other hand, $H^1(G/S)$ is contained in the radical of the cup product for G if and only if $A_S = H^1(G)$ which, by Proposition 2, is equivalent to G^*/\tilde{S} having rank $n - 1$ if p is odd and rank n if $p = 2$. \qed

Proof of Proposition 1. We refer to the proof of Proposition 2. Let $z \in G$ be such that $g(z) = 1$. The map $s \mapsto [z, s]$ then induces a homomorphism $k: S/G^* \rightarrow G^*/\tilde{S}$ which does not depend on the choice of z. By the second part of the proof of Proposition 2, the following diagram is commutative:

$$
\begin{array}{ccc}
A_S & \xrightarrow{d} & H^1(G^*/\tilde{S}) \\
\downarrow & & \downarrow k \\
H^1(G) & \xrightarrow{\tau} & H^1(S/G^*)
\end{array}
$$

where \tilde{k} is the dual of k and τ is restriction. The snake lemma applied to this diagram enlarged by the appropriate kernels and cokernels now yields that $A_S = H^1(G/\tilde{S})$ if p is odd, or if $p = 2$ and $S^*G_2 \neq G^*$, hence $H^1(G^*/S^*G_2) = H^1(G/S)$.

If $p = 2$ and $S^*G_2 = G^*$, then, in a way similar to the proof of (c) of the Lemma, an element $z \in G$ such that $g(z) = 1$ can be found which satisfies $z^2 \in \tilde{S}$. Let $k: G \rightarrow G^*/\tilde{S}$ be the homomorphism induced by $x \mapsto [z, x]$. Then the proof of Proposition 2 shows that

$$
\begin{array}{ccc}
A_S & \xrightarrow{d} & H^1(G^*/\tilde{S}) \\
\downarrow & & \downarrow k \\
H^1(G)
\end{array}
$$

is commutative. Hence $A_S = H^1(G/\tilde{S})$ in this case, too. \qed
REMARK. Let p be an odd prime and G a pro-p group with a maximal subgroup S. By Proposition 2, the annihilator A_S, with respect to the cup product, of $H^1(G/S)$ in $H^1(G)$ is smallest possible, i.e., $A_S = H^1(G/S)$, exactly when $G^* = S_2(G^p)G_3$. Let (C) denote this condition if it holds for all maximal $S \leq G$. It is obviously satisfied if $G_2 \leq (G^p)$ in which case G is called powerful in [2]. The converse holds if the rank n_G of G is ≤ 3, but fails for $n_G = 4$.

PROOF. (i) Let G satisfy (C) and $n_G \leq 3$. We can assume that $G^p = 1$ and $G_3 = 1$ because G satisfies (C) if and only if $G/(G^p)G_3$ does, and the same is true for powerfulness. So it remains to show that G is abelian. We have $S_2 = G_2$ for all maximal $S \leq G$. This settles the case $n_G = 2$ because $G_S \cong G/G_2$ implies that $n_S = n_G - 1 = 1$, hence $S_2 = 1$. Now let $n_G = 3$, $G = \langle x_1, x_2, x_3 \rangle$, and assume that $G_2 \neq 1$. Then $G_2 = \mathbb{Z}/(p)$ by using some maximal subgroup as above. Let $G_2 = \langle [x_1, x_2] \rangle$, say. Then $[x_3, x_1] = [x_2, x_1]^a = [x_2^a, x_1]$ for some $a \in \mathbb{Z}$. Let $\tilde{x}_3 = x_3 x_2^{-a}$. Then $[\tilde{x}_3, x_1] = 1$ and $G = \langle x_1, x_2, \tilde{x}_3 \rangle$. The subgroup $S = \langle x_1, \tilde{x}_3 \rangle G_2$ is maximal because $G = \langle x_2 \rangle S$, but $S_2 = 1$.

(ii) Let $G = \langle x_1, x_2, x_3, x_4 \rangle$ satisfy the relations $G^p = 1$, $G_3 = 1$, $\langle [x_1, x_2], [x_3, x_4] \rangle = 1$, and $[x_1, x_2] = [x_3, x_4] (\neq 1)$. Then G is not powerful. Since $G_2 = \mathbb{Z}/(p)$, condition (C) just means that $S_2 \neq 1$ for all maximal $S \leq G$. Assume there is an S with $S_2 = 1$. Then $S = C_G(s)$, the centralizer of any $s \in S$ which is not in the center $Z(G)$. We have that $x_2 \not\in S$ because otherwise, since $x_2 \not\in Z(G)$, x_3 and x_4 would be in S and would hence commute. Therefore, $G = \langle x_1 \rangle S$ and $x_2 = x_1^a s$ for some $a \in \mathbb{Z}$, $s \in S$. Then $s = x_1^{-a} x_2 \not\in Z(G)$ because $[s, x_1] = [x_2, x_1]$. But $x_3, x_4 \in C_G(s) = S$ which is impossible. □

REFERENCES

2. A. Lubotzky and A. Mann, Powerful p-groups, preprint.

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802

Current address: Pennsylvania State University, Delaware County Campus, Media, Pennsylvania 19063