Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Schrödinger equations: pointwise convergence to the initial data

Author: Luis Vega
Journal: Proc. Amer. Math. Soc. 102 (1988), 874-878
MSC: Primary 35J10
MathSciNet review: 934859
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ u(x,t)$ be the solution of the Schrödinger equation with initial data $ f$ in the Sobolev space $ {H^s}({{\mathbf{R}}^n})$ with $ s > \frac{1}{2}$. The a.e. convergence of $ u(x,t)$ to $ f(x)$ follows from a weighted estimate of the maximal function $ u * (x,t) = {\text{su}}{{\text{p}}_{t > 0}}\vert u(x,t)\vert$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35J10

Retrieve articles in all journals with MSC: 35J10

Additional Information

PII: S 0002-9939(1988)0934859-0
Article copyright: © Copyright 1988 American Mathematical Society