Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Notes on interpolation by the real method between $ C(T,A\sb 0)$ and $ C(T,A\sb 1)$

Author: Mieczysław Mastyło
Journal: Proc. Amer. Math. Soc. 102 (1988), 945-948
MSC: Primary 46E40; Secondary 46M35
MathSciNet review: 934872
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a Banach space and let $ T$ be a compact Hausdorff space. We denote by $ C(T,A)$ the Banach space of all $ A$-valued continuous functions defined on $ T$ endowed with the supremum norm. We show that if $ T$ is infinite and $ ({A_0},{A_1})$ is a Banach couple with $ {A_0}$ continuously embedded in $ {A_1}$, then the interpolation space $ {(C(T,{A_0}),C(T,{A_1}))_{\varphi ,p}}$ is equal to $ C\left( {T,{{\left( {{A_0},{A_1}} \right)}_{\varphi ,p}}} \right)$ if and only if $ {A_0}$ is closed in $ {A_1}$.

References [Enhancements On Off] (What's this?)

  • [1] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. MR 0482275
  • [2] Jerry Bona and Ridgway Scott, Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces, Duke Math. J. 43 (1976), no. 1, 87–99. MR 0393887
  • [3] Ju. A. Brudnyĭ and N. Ja. Krugljak, Real interpolation functors, Soviet Math. Dokl. 23 (1981), 5-8.
  • [4] Fernando Cobos, Some spaces in which martingale difference sequences are unconditional, Bull. Polish Acad. Sci. Math. 34 (1986), no. 11-12, 695–703 (1987) (English, with Russian summary). MR 890615
  • [5] Michael Cwikel and Jaak Peetre, Abstract 𝐾 and 𝐽 spaces, J. Math. Pures Appl. (9) 60 (1981), no. 1, 1–49. MR 616007
  • [6] Jan Gustavsson, A function parameter in connection with interpolation of Banach spaces, Math. Scand. 42 (1978), no. 2, 289–305. MR 512275
  • [7] Svante Janson, Per Nilsson, and Jaak Peetre, Notes on Wolff’s note on interpolation spaces, Proc. London Math. Soc. (3) 48 (1984), no. 2, 283–299. With an appendix by Misha Zafran. MR 729071, 10.1112/plms/s3-48.2.283
  • [8] Mireille Levy, L’espace d’interpolation réel (𝐴₀,𝐴₁)_{𝜃,𝑝} contient 𝑙^{𝑝}, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), no. 14, A675–A677 (French, with English summary). MR 560331
  • [9] L. Maligranda and M. Mastyło, Notes on non-interpolation spaces, J. Approximation Theory (to appear).
  • [10] Per Nilsson, Reiteration theorems for real interpolation and approximation spaces, Ann. Mat. Pura Appl. (4) 132 (1982), 291–330 (1983). MR 696048, 10.1007/BF01760986

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E40, 46M35

Retrieve articles in all journals with MSC: 46E40, 46M35

Additional Information

Keywords: Interpolation spaces, complemented subspaces, $ K$-functional
Article copyright: © Copyright 1988 American Mathematical Society