Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

$ 4$-planar geodesic Kaehler immersions into a complex projective space


Authors: Jin Suk Pak and Kunio Sakamoto
Journal: Proc. Amer. Math. Soc. 102 (1988), 995-999
MSC: Primary 53C42; Secondary 53C40
DOI: https://doi.org/10.1090/S0002-9939-1988-0934881-4
MathSciNet review: 934881
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ f$ is a proper $ 4$-planar geodesic Kaehler immersion of a connected complete Kaehler manifold $ {M^n}(n \geq 2)$ into $ C{P^m}(c)$, then $ {M^n} = C{P^n}(c/4)$ and $ f$ is equivalent to the 4th Veronese map.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C42, 53C40

Retrieve articles in all journals with MSC: 53C42, 53C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0934881-4
Keywords: $ 4$-planar geodesic immersions, Kaehler manifolds, second fundamental forms
Article copyright: © Copyright 1988 American Mathematical Society