Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Variations of cub filter on $ \mathcal{P}\sb \kappa\lambda$


Author: Yo Matsubara
Journal: Proc. Amer. Math. Soc. 102 (1988), 1009-1017
MSC: Primary 03E05; Secondary 03E55, 03E60, 04A20
DOI: https://doi.org/10.1090/S0002-9939-1988-0934884-X
MathSciNet review: 934884
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In his 1973 paper, Jech extended the notion of cub and stationary sets to such sets in $ {\mathcal{P}_\kappa }\lambda $ and showed that many of their properties are preserved. We study variations of cub filters in this paper. We make use of the partition property (a large cardinal hypothesis) to investigate the properties of these filters. In the last section we investigate the relation of our filter to supercompact filters on $ {\mathcal{P}_{{\aleph _1}}}\lambda $ under the Axiom of Determinacy. This motivates the formulation of a certain infinitary partition property, and this property implies the $ \lambda $-supercompactness of $ {\aleph _1}$.


References [Enhancements On Off] (What's this?)

  • [1] Stewart Baldwin, The consistency strength of certain stationary subsets of $ {\mathcal{P}_\kappa }\lambda $, Proc. Amer. Math. Soc. 92 (1984), 90-92. MR 749898 (86c:03043)
  • [2] Howard Becker, AD and the supercompactness of $ {\aleph _1}$, J. Symbolic Logic 46 (1981), 822-842. MR 641495 (83b:03061)
  • [3] Leo A. Harrington and Alexander S. Kechris, On the determinacy of games on ordinals, Ann. Math. Logic 20 (1980), 109-154. MR 622782 (83c:03044)
  • [4] Thomas J. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1973), 165-198. MR 0325397 (48:3744)
  • [5] Eugene M. Kleinberg, Strong partition properties for infinite cardinals, J. Symbolic Logic 35 (1970), 410-428. MR 0309734 (46:8839)
  • [6] David W. Kueker, Countable approximations and Löwenheim-Skolem theories, Ann. Math. Logic 11 (1977), 57-103. MR 0457191 (56:15406)
  • [7] Menachem K. Magidor, Combinatorial characterization of supercompact cardinals, Proc. Amer. Math. Soc. 42 (1974), 279-285. MR 0327518 (48:5860)
  • [8] Yo Matsubara, Menas' conjecture and generic ultrapowers, Ann. Pure Appl. Logic 36 (1987), 225-234. MR 915899 (88m:04002)
  • [9] Telis K. Menas, On strong compactness and supercompactness, Ann. Math. Logic 7 (1974), 327-359. MR 0357121 (50:9589)
  • [10] -, A combinatorial property of $ {\mathcal{P}_\kappa }(\lambda )$, J. Symbolic Logic 41 (1976), 225-233. MR 0409186 (53:12948)
  • [11] Yiannis N. Moschovakis, Descriptive set theory, North-Holland, 1980. MR 561709 (82e:03002)
  • [12] W. Hugh Woodin, AD and the uniqueness of the supercompact measures on $ {\mathcal{P}_{{\omega _1}}}\lambda $, Cabal Seminar 79-81, Lecture Notes in Math., vol. 1019, Springer-Verlag, 1983.
  • [13] W. S. Zwicker, $ {\mathcal{P}_\kappa }\lambda $ combinatorics II: the RK ordering beneath a supercompact measure, J. Symbolic Logic 51 (1986), 604-616. MR 853843 (87j:03078)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03E05, 03E55, 03E60, 04A20

Retrieve articles in all journals with MSC: 03E05, 03E55, 03E60, 04A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0934884-X
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society