Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Chain-preserving diffeomorphisms and CR equivalence

Author: Jih Hsin Chêng
Journal: Proc. Amer. Math. Soc. 103 (1988), 75-80
MSC: Primary 32F25
MathSciNet review: 938647
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that a diffeomorphism that preserves chains between two nondegenerate CR manifolds is actually either a CR isomorphism or a conjugate CR isomorphism.

References [Enhancements On Off] (What's this?)

  • [1] D. Burns, Jr. and S. Shnider, Real hypersurfaces in complex manifolds, Several Complex Variables, Proc. Sympos. Pure Math., vol. 30, part 2, Amer. Math. Soc., Providence, R. I., 1977, pp. 141-168. MR 0450603 (56:8896)
  • [2] E. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes. I, II, Oeuvres II, 2, pp. 1231-1304; ibid. III, 2, pp. 1217-1238.
  • [3] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271. MR 0425155 (54:13112)
  • [4] H. Jacobowitz, Chains in CR geometry, J. Differential Geom. 21 (1985), 163-194. MR 816668 (87f:32046)
  • [5] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math. 2 (1976), 131-190. MR 0589931 (58:28645)
  • [6] K. Yano, The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957. MR 0088769 (19:576f)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32F25

Retrieve articles in all journals with MSC: 32F25

Additional Information

Keywords: CR manifold, chain
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society