Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Representation theory of $ {\rm U}\sb 1(H)$


Author: Robert P. Boyer
Journal: Proc. Amer. Math. Soc. 103 (1988), 97-104
MSC: Primary 22E65; Secondary 46L55
DOI: https://doi.org/10.1090/S0002-9939-1988-0938651-2
MathSciNet review: 938651
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Mixed tensor representations of the inductive limit unitary group are studied according to factoriality, quasi-equivalence, and irreducibility


References [Enhancements On Off] (What's this?)

  • [1] D. Aldous and J. Pitman, On the zero-one law for exchangeable events, Ann. Probab. 7 (1979), 704-723. MR 537216 (81b:60032)
  • [2] B. M. Baker, Free states of the gauge invariant canonical anticommutation relations, Trans. Amer. Math. Soc. 237 (1978), 35-61. MR 479361 (80b:46081)
  • [3] B. M. Baker and R. T. Powers, Product states of the gauge invariant and rotationally invariant CAR algebras, J. Operator Theory 10 (1983), 365-393. MR 728916 (85f:46115)
  • [4] -, Product states of certain group invariant AF-algebras, J. Operator Theory 16 (1986), 3-50. MR 847331 (87m:46117)
  • [5] R. P. Boyer, Representation theory of the Hilbert-Lie group $ U{(H)_2}$, Duke J. Math. 47 (1980), 325-344. MR 575900 (81g:22024)
  • [6] -, Representation theory of $ {U_1}(H)$ in the symmetric tensors, J. Funct. Anal. 77 (1988).
  • [7] A. L. Carey, Some homogeneous spaces and representations of the Hilbert-Lie group $ U{(H)_2}$, Rev. Roumaine Math. Pures Appl. 30 (1985), 505-520. MR 826232 (87e:22044)
  • [8] G. Elliot, On extending the trace as a linear functional, Reports on Math. Physics 15 (1979), 199-203. MR 554154 (83b:47032a)
  • [9] S. Kerov and A. M. Vershik, The characters of the infinite symmetric group and probability properties of the Robinson-Schensted-Knuth algorithm, SIAM J. Algebra Discrete Math. 7 (1986), 116-124. MR 819713 (87e:22014)
  • [10] R. C. King, Branching rules for classical Lie groups using tensor and spinor methods, J. Physics A 8 (1975), 429-441. MR 0411400 (53:15136)
  • [11] D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math. 34 (1970), 709-727. MR 0272654 (42:7535)
  • [12] D. Pickrell, Measures on infinite dimensional Grassmann manifolds, J. Funct. Anal. 70 (1987), 323-356. MR 874060 (88d:58017)
  • [13] -, Ph.D. Thesis, Univ. of Arizona, 1983.
  • [14] R. T. Powers and E. Størmer, Free states of the canonical anticommutation relations, Comm. Math. Phys. 16 (1970), 1-33. MR 0269230 (42:4126)
  • [15] G. Segal and G. Wilson, Loop groups and equations of $ KdV$ type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5-65. MR 783348 (87b:58039)
  • [16] R. P. Stanley, Theory and applications of plane partitions. Part I, Studies in Appl. Math. 50 (1971), 167-188. MR 0325407 (48:3754)
  • [17] S. Stratila and D. Voiculescu, Representations of AF-algebras and of the group $ U(\infty )$, Lecture Notes in Math., vol. 486, Springer-Verlag, Berlin, Heidelberg, and New York, 1975. MR 0458188 (56:16391)
  • [18] -, On a class of KMS states for the unitary group $ U(\infty )$, Math. Ann. 235 (1978), 87-110. MR 0482248 (58:2327)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E65, 46L55

Retrieve articles in all journals with MSC: 22E65, 46L55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0938651-2
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society