Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A characterization of nonlinear semigroups with smoothing effect


Author: Michiaki Watanabe
Journal: Proc. Amer. Math. Soc. 103 (1988), 153-159
MSC: Primary 47H20; Secondary 47H06
DOI: https://doi.org/10.1090/S0002-9939-1988-0938661-5
MathSciNet review: 938661
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \{ S(t):t > 0\} $ be a nonlinear semigroup of operators mapping a closed subset $ C$ of a real Banach space $ X$ into itself. Conditions are found for an accretive operator in $ X$ to be the generator of $ \{ S(t):t > 0\} $ with smoothing effect: For each

$\displaystyle x \in C,\;S(t)x \in V\;{\text{a}}{\text{.e}}{\text{.}}\;{\text{t > 0,}}$

among other things, where $ V$ is a Banach space imbedded continuously in $ X$.

The conditions contain a Gårding-type inequality, and are shown also to be necessary if $ C$ is a closed convex subset of a "nice" Banach space $ X$.


References [Enhancements On Off] (What's this?)

  • [1] J.-B. Baillon, Générateurs et semi-groupes dans les espaces de Banach uniformément lisses, J. Funct. Anal. 29 (1978), 199-213. MR 504459 (80i:47090)
  • [2] H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Nonlinear Functional Analysis (E. H. Zarantonello, ed.), Academic Press, New York, 1971, pp. 101-156. MR 0394323 (52:15126)
  • [3] M. G. Crandall, A generalized domain for semigroups generators, Proc. Amer. Math. Soc. 37 (1973), 434-440. MR 0313873 (47:2426)
  • [4] M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265-298. MR 0287357 (44:4563)
  • [5] L. C. Evans, Applications of nonlinear semigroup theory to certain partial differential equations, Nonlinear Evolution Equations (M. G. Crandall, ed.), Academic Press, New York, 1978, pp. 163-188. MR 513818 (81b:47078)
  • [6] Y. Komura, Differentiability of nonlinear semigroups, J. Math. Soc. Japan 21 (1969), 375-402. MR 0250118 (40:3358)
  • [7] I. Miyadera, Some remarks on semi-groups of nonlinear operators, Tôhoku Math. J. 23 (1971), 245-258. MR 0296746 (45:5805)
  • [8] A. Pazy, On differentiability and compactness of semi-groups of linear operators, J. Math. Mech. 17 (1968), 1131-1141. MR 0231242 (37:6797)
  • [9] -, The Lyapunov method for semigroups of nonlinear contractions in Banach spaces, J. Analyse Math. 40 (1981), 239-262. MR 659793 (83g:34074)
  • [10] S. Reich, Product formulas, nonlinear semigroups, and accretive operators, J. Funct. Anal. 36 (1980), 147-168. MR 569251 (81k:47076)
  • [11] M. Watanabe, On semigroups generated by $ m$-accretive operators in a strict sense, Proc. Amer. Math. Soc. 96 (1986), 43-49. MR 813807 (87b:47071)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H20, 47H06

Retrieve articles in all journals with MSC: 47H20, 47H06


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0938661-5
Keywords: Nonlinear semigroup, accretive operator, smoothing effect
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society