Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weighted norm inequalities for Bochner-Riesz spherical summation multipliers


Author: Kenneth F. Andersen
Journal: Proc. Amer. Math. Soc. 103 (1988), 165-171
MSC: Primary 42B15; Secondary 42B20, 44A15
DOI: https://doi.org/10.1090/S0002-9939-1988-0938663-9
MathSciNet review: 938663
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Sufficient conditions to be satisfied by nonnegative weight functions $ \omega \left( {\left\vert x \right\vert} \right)$ are given in order that the Bochner-Riesz spherical summation multiplier operators restricted to radial functions of $ {R^n}$ be bounded on $ {L^p}\left( {{R^n};\omega \left( {\left\vert x \right\vert} \right)dx} \right)$. For a certain class of weights these conditions are also necessary.


References [Enhancements On Off] (What's this?)

  • [1] K. F. Andersen, Weighted inequalities for the disc multiplier, Proc. Amer. Math. Soc. 83 (1981), 269-275. MR 624912 (83a:42016)
  • [2] K. F. Andersen and B. Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 (1982), 9-26. MR 665888 (83k:42018)
  • [3] L. Carleson and P. Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287-299. MR 0361607 (50:14052)
  • [4] S. Chanillo and B. Muckenhoupt, Weak type estimates for Bochner-Riesz spherical summation multipliers, Trans. Amer. Math. Soc. 294 (1986), 693-703. MR 825730 (87f:42038)
  • [5] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36. MR 0257819 (41:2468)
  • [6] -, The multiplier problem for the ball, Ann. of Math. 94 (1971), 330-336. MR 0296602 (45:5661)
  • [7] -, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44-52. MR 0320624 (47:9160)
  • [8] C. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996-999. MR 0063477 (16:127b)
  • [9] I. I. Hirschman, Jr., Multiplier transformations II, Duke Math. J. 28 (1961), 45-56. MR 0124693 (23:A2004)
  • [10] R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251. MR 0312139 (47:701)
  • [11] C. Kenig and P. Tomas, The weak behavior of spherical means, Proc. Amer. Math. Soc. 78 (1980), 48-50. MR 548082 (80k:42021)
  • [12] B. Muckenhoupt, Hardy's inequalities with weights, Studia Math. 44 (1972), 31-38.
  • [13] -, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45:2461)
  • [14] E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-496. MR 0082586 (18:575d)
  • [15] -, Singular integrals and the differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970. MR 0290095 (44:7280)
  • [16] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971. MR 0304972 (46:4102)
  • [17] P. Tomas, Restriction theorems for the Fourier transform, Harmonic Analysis on Euclidean Space (G. Weiss and S. Wainger, Eds.), Proc. Sympos. Pure Math., vol 35, Part I, Amer. Math. Soc., Providence, R.I., 1979, pp. 111-114. MR 545245 (81d:42029)
  • [18] G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, London and New York, 1966. MR 1349110 (96i:33010)
  • [19] G. V. Welland, Norm convergence of Riesz-Bochner means for radial functions, Canad. J. Math. 27 (1975), 176-185. MR 0387948 (52:8786)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B15, 42B20, 44A15

Retrieve articles in all journals with MSC: 42B15, 42B20, 44A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0938663-9
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society