Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Degrees of constant-to-one factor maps

Author: Paul Trow
Journal: Proc. Amer. Math. Soc. 103 (1988), 184-188
MSC: Primary 28D05
MathSciNet review: 938666
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be a constant-to-one endomorphism of degree $ d$, of a sub-shift of finite type $ {\Sigma _A}$. If $ p$ is a prime dividing $ d$, then $ p$ divides every nonleading coefficient of $ {\chi _A}$, the characteristic polynomial for $ A$. Further constraints are given for the possible degrees of a constant-to-one factor map between subshifts of finite type.

References [Enhancements On Off] (What's this?)

  • [A-M] R. L. Adler and B. Marcus, Topological entropy and equivalence of dynamical systems, Mem. Amer. Math. Soc., vol. 20, no. 219, 1979. MR 533691 (83h:28027)
  • [B1] M. Boyle, Constraints on the degree of a sofic homomorphism and the induced multiplication of measures on unstable sets, Israel J. Math. 53 (1986), 52-68. MR 861897 (88d:28025)
  • [B2] -, personal communication.
  • [H] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320-375. MR 0259881 (41:4510)
  • [K] B. Kitchens, Continuity properties of factor maps in ergodic theory, Ph.D. thesis, Univ. of North Carolina, Chapel Hill, 1981.
  • [N] M. Nasu, Constant-to-one and onto global maps of homomorphisms between strongly connected graphs, Ergodic Theory Dynamical Systems 3 (1983), 387-414. MR 741394 (85m:58162)
  • [P-T] W. Parry and S. Tuncel, Classification problems in ergodic theory, London Math. Society Lecture Note Series 67, Cambridge Univ. Press, 1982. MR 666871 (84g:28024)
  • [W1] R. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120-153. MR 0331436 (48:9769)
  • [W2] -, Classification of one-dimensional attractors, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R.I., 1970, pp. 341-361. MR 0266227 (42:1134)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28D05

Retrieve articles in all journals with MSC: 28D05

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society