Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Degrees of constant-to-one factor maps

Author: Paul Trow
Journal: Proc. Amer. Math. Soc. 103 (1988), 184-188
MSC: Primary 28D05
MathSciNet review: 938666
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be a constant-to-one endomorphism of degree $ d$, of a sub-shift of finite type $ {\Sigma _A}$. If $ p$ is a prime dividing $ d$, then $ p$ divides every nonleading coefficient of $ {\chi _A}$, the characteristic polynomial for $ A$. Further constraints are given for the possible degrees of a constant-to-one factor map between subshifts of finite type.

References [Enhancements On Off] (What's this?)

  • [A-M] Roy L. Adler and Brian Marcus, Topological entropy and equivalence of dynamical systems, Mem. Amer. Math. Soc. 20 (1979), no. 219, iv+84. MR 533691, 10.1090/memo/0219
  • [B1] Mike Boyle, Constraints on the degree of a sofic homomorphism and the induced multiplication of measures on unstable sets, Israel J. Math. 53 (1986), no. 1, 52–68. MR 861897, 10.1007/BF02772669
  • [B2] -, personal communication.
  • [H] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320–375. MR 0259881
  • [K] B. Kitchens, Continuity properties of factor maps in ergodic theory, Ph.D. thesis, Univ. of North Carolina, Chapel Hill, 1981.
  • [N] Masakazu Nasu, Constant-to-one and onto global maps of homomorphisms between strongly connected graphs, Ergodic Theory Dynam. Systems 3 (1983), no. 3, 387–413. MR 741394, 10.1017/S0143385700002042
  • [P-T] William Parry and Selim Tuncel, Classification problems in ergodic theory, London Mathematical Society Lecture Note Series, vol. 67, Cambridge University Press, Cambridge-New York, 1982. Statistics: Textbooks and Monographs, 41. MR 666871
  • [W1] R. F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120–153; errata, ibid. (2) 99 (1974), 380–381. MR 0331436
  • [W2] R. F. Williams, Classification of one dimensional attractors, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 341–361. MR 0266227

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28D05

Retrieve articles in all journals with MSC: 28D05

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society