Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On blow up of solutions of nonlinear evolution equations


Author: Philip Korman
Journal: Proc. Amer. Math. Soc. 103 (1988), 189-197
MSC: Primary 35L70; Secondary 35B05, 35B40
DOI: https://doi.org/10.1090/S0002-9939-1988-0938667-6
MathSciNet review: 938667
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a complete description of domains of blow up for general second order inequalities, which allows us to obtain some new results on nonexistence of global solutions for nonlinear hyperbolic equations, both in $ {R^n}$ and bounded domains.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford (2) 28 (1977), 473-486. MR 0473484 (57:13150)
  • [2] R. Bellman, Stability theory of differential equations, McGraw-Hill, New York, 1953. MR 0061235 (15:794b)
  • [3] R. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z. 132 (1973), 183-203. MR 0340799 (49:5549)
  • [4] -, Finite-time blow-up for solutions of nonlinear wave equations, Math. Z. 177 (1981), 323-340. MR 618199 (82i:35120)
  • [5] J. K. Hale, Ordinary differential equations, Wiley, New York, 1969. MR 0419901 (54:7918)
  • [6] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28 (1979), 235-268. MR 535704 (80i:35114)
  • [7] S. Kaplan, On growth of solutions of quasilinear parabolic equations, Comm. Pure Appl. Math. 16 (1957), 305-330. MR 0160044 (28:3258)
  • [8] T. Kato, Blow up of solutions of some nonlinear hyperbolic equations, Comm. Pure Appl. Math. 33 (1980), 501-505. MR 575735 (82f:35128)
  • [9] S. Klainerman and G. Ponce, Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math. 36 (1983), 133-141. MR 680085 (84a:35173)
  • [10] H. A. Levine, Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: the method of unbounded Fourier coefficients, Math. Ann. 214 (1975), 205-220. MR 0385336 (52:6200)
  • [11] S. Mizohata, The theory of partial differential equations, Cambridge Univ. Press, London and New York, 1973. MR 0599580 (58:29033)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35L70, 35B05, 35B40

Retrieve articles in all journals with MSC: 35L70, 35B05, 35B40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0938667-6
Keywords: Blow up of solutions, nonlinear evolution equations, phase plane analysis
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society