Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The density of extreme points in complex polynomial approximation


Authors: András Kroó and E. B. Saff
Journal: Proc. Amer. Math. Soc. 103 (1988), 203-209
MSC: Primary 30E10; Secondary 41A10, 41A50
DOI: https://doi.org/10.1090/S0002-9939-1988-0938669-X
MathSciNet review: 938669
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K$ be a compact set in the complex plane having connected and regular complement, and let $ f$ be any function continuous on $ K$ and analytic in the interior of $ K$. For the polynomials $ p_n^*(f)$ of respective degrees at most $ n$ of best uniform approximation to $ f$ on $ K$, we investigate the density of the sets of extreme points

$\displaystyle {A_n}(f): = \{ z \in K:\vert f(z) - p_n^*(f)(z)\vert = \vert\vert f - p_n^*(f)\vert{\vert _K}\} $

in the boundary of $ K$.

References [Enhancements On Off] (What's this?)

  • [1] W. H. Fuchs, On Chebyshev approximation on sets with several components, Proc. NATO Adv. Study Inst., Univ. of Durham, 1979, Academic Press, New York, 1980, pp. 399-408. MR 623482 (82j:41024)
  • [2] M. I. Kadec, On the distribution of points of maximal deviation in the approximation of continuous functions by polynomials, Uspekhi Mat. Nauk 15 (1960), 199-202. MR 0113079 (22:3920)
  • [3] A. Kroó, On the distribution of points of maximal deviation in complex Čebyšev approximation, Anal. Math. 7 (1981), 257-263. MR 648490 (84j:30058)
  • [4] G. G. Lorentz, Distribution of alternation points in uniform polynomial approximation, Proc. Amer. Math. Soc. 92 (1984), 401-403. MR 759662 (86e:41047)
  • [5] D. J. Newman and H. S. Shapiro, Some theorems on Čebyšev approximation, Duke Math J. 30 (1963), 673-682. MR 0156138 (27:6070)
  • [6] A. Pinkus, $ n$-widths in approximation theory, Springer-Verlag, Berlin, 1985. MR 774404 (86k:41001)
  • [7] H. S. Shapiro, Topics in approximation theory, Lecture Notes in Math., Vol. 187, Springer-Verlag, Berlin, 1971. MR 0437981 (55:10902)
  • [8] Sp. Tashev, On the distribution of the points of maximal deviation for the polynomials of best Chebyshev and Hausdorff approximations, Approximation and Function Spaces (Z. Ciesielski, ed.), North-Holland, Amsterdam, 1981, pp. 791-799. MR 649477 (83c:41029)
  • [9] M. Tsuji, Potential theory in modern function theory, 2nd ed., Chelsea, New York, 1958. MR 0114894 (22:5712)
  • [10] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., vol. 20, Amer. Math. Soc., Providence, R.I., 1935; 5th ed., 1969. MR 0218588 (36:1672b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30E10, 41A10, 41A50

Retrieve articles in all journals with MSC: 30E10, 41A10, 41A50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0938669-X
Keywords: Polynomial approximation, extreme points, Chebyshev polynomials, best approximants
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society