The density of extreme points in complex polynomial approximation

Authors:
András Kroó and E. B. Saff

Journal:
Proc. Amer. Math. Soc. **103** (1988), 203-209

MSC:
Primary 30E10; Secondary 41A10, 41A50

DOI:
https://doi.org/10.1090/S0002-9939-1988-0938669-X

MathSciNet review:
938669

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a compact set in the complex plane having connected and regular complement, and let be any function continuous on and analytic in the interior of . For the polynomials of respective degrees at most of best uniform approximation to on , we investigate the density of the sets of extreme points

**[1]**W. H. J. Fuchs,*On Chebyshev approximation on sets with several components*, Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979) Academic Press, London-New York, 1980, pp. 399–408. MR**623482****[2]**M. Ĭ. Kadec′,*On the distribution of points of maximum deviation in the approximation of continuous functions by polynomials*, Uspehi Mat. Nauk**15**(1960), no. 1 (91), 199–202 (Russian). MR**0113079****[3]**A. Kroó,*On the distribution of points of maximal deviation in complex Čebyšev approximation*, Anal. Math.**7**(1981), no. 4, 257–263 (English, with Russian summary). MR**648490**, https://doi.org/10.1007/BF01908217**[4]**G. G. Lorentz,*Distribution of alternation points in uniform polynomial approximation*, Proc. Amer. Math. Soc.**92**(1984), no. 3, 401–403. MR**759662**, https://doi.org/10.1090/S0002-9939-1984-0759662-2**[5]**D. J. Newman and Harold S. Shapiro,*Some theorems on Čebyšev approximation*, Duke Math. J.**30**(1963), 673–681. MR**0156138****[6]**Allan Pinkus,*𝑛-widths in approximation theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 7, Springer-Verlag, Berlin, 1985. MR**774404****[7]**Harold S. Shapiro,*Topics in approximation theory*, Springer-Verlag, Berlin-New York, 1971. With appendices by Jan Boman and Torbjörn Hedberg; Lecture Notes in Math., Vol. 187. MR**0437981****[8]**Sp. Tashev,*On the distribution of the points of maximal deviation for the polynomials of best Chebyshev and Hausdorff approximations*, Approximation and function spaces (Gdańsk, 1979) North-Holland, Amsterdam-New York, 1981, pp. 791–799. MR**649477****[9]**M. Tsuji,*Potential theory in modern function theory*, Maruzen Co., Ltd., Tokyo, 1959. MR**0114894****[10]**J. L. Walsh,*Interpolation and approximation by rational functions in the complex domain*, Third edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR**0218587**

J. L. Walsh,*Interpolation and approximation by rational functions in the complex domain*, Fourth edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1965. MR**0218588**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30E10,
41A10,
41A50

Retrieve articles in all journals with MSC: 30E10, 41A10, 41A50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0938669-X

Keywords:
Polynomial approximation,
extreme points,
Chebyshev polynomials,
best approximants

Article copyright:
© Copyright 1988
American Mathematical Society