The density of extreme points in complex polynomial approximation

Authors:
András Kroó and E. B. Saff

Journal:
Proc. Amer. Math. Soc. **103** (1988), 203-209

MSC:
Primary 30E10; Secondary 41A10, 41A50

DOI:
https://doi.org/10.1090/S0002-9939-1988-0938669-X

MathSciNet review:
938669

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a compact set in the complex plane having connected and regular complement, and let be any function continuous on and analytic in the interior of . For the polynomials of respective degrees at most of best uniform approximation to on , we investigate the density of the sets of extreme points

**[1]**W. H. Fuchs,*On Chebyshev approximation on sets with several components*, Proc. NATO Adv. Study Inst., Univ. of Durham, 1979, Academic Press, New York, 1980, pp. 399-408. MR**623482 (82j:41024)****[2]**M. I. Kadec,*On the distribution of points of maximal deviation in the approximation of continuous functions by polynomials*, Uspekhi Mat. Nauk**15**(1960), 199-202. MR**0113079 (22:3920)****[3]**A. Kroó,*On the distribution of points of maximal deviation in complex Čebyšev approximation*, Anal. Math.**7**(1981), 257-263. MR**648490 (84j:30058)****[4]**G. G. Lorentz,*Distribution of alternation points in uniform polynomial approximation*, Proc. Amer. Math. Soc.**92**(1984), 401-403. MR**759662 (86e:41047)****[5]**D. J. Newman and H. S. Shapiro,*Some theorems on Čebyšev approximation*, Duke Math J.**30**(1963), 673-682. MR**0156138 (27:6070)****[6]**A. Pinkus,*-widths in approximation theory*, Springer-Verlag, Berlin, 1985. MR**774404 (86k:41001)****[7]**H. S. Shapiro,*Topics in approximation theory*, Lecture Notes in Math., Vol. 187, Springer-Verlag, Berlin, 1971. MR**0437981 (55:10902)****[8]**Sp. Tashev,*On the distribution of the points of maximal deviation for the polynomials of best Chebyshev and Hausdorff approximations*, Approximation and Function Spaces (Z. Ciesielski, ed.), North-Holland, Amsterdam, 1981, pp. 791-799. MR**649477 (83c:41029)****[9]**M. Tsuji,*Potential theory in modern function theory*, 2nd ed., Chelsea, New York, 1958. MR**0114894 (22:5712)****[10]**J. L. Walsh,*Interpolation and approximation by rational functions in the complex domain*, Amer. Math. Soc. Colloq. Publ., vol. 20, Amer. Math. Soc., Providence, R.I., 1935; 5th ed., 1969. MR**0218588 (36:1672b)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30E10,
41A10,
41A50

Retrieve articles in all journals with MSC: 30E10, 41A10, 41A50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0938669-X

Keywords:
Polynomial approximation,
extreme points,
Chebyshev polynomials,
best approximants

Article copyright:
© Copyright 1988
American Mathematical Society