The density of extreme points in complex polynomial approximation
Authors:
András Kroó and E. B. Saff
Journal:
Proc. Amer. Math. Soc. 103 (1988), 203-209
MSC:
Primary 30E10; Secondary 41A10, 41A50
DOI:
https://doi.org/10.1090/S0002-9939-1988-0938669-X
MathSciNet review:
938669
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a compact set in the complex plane having connected and regular complement, and let
be any function continuous on
and analytic in the interior of
. For the polynomials
of respective degrees at most
of best uniform approximation to
on
, we investigate the density of the sets of extreme points


- [1] W. H. Fuchs, On Chebyshev approximation on sets with several components, Proc. NATO Adv. Study Inst., Univ. of Durham, 1979, Academic Press, New York, 1980, pp. 399-408. MR 623482 (82j:41024)
- [2] M. I. Kadec, On the distribution of points of maximal deviation in the approximation of continuous functions by polynomials, Uspekhi Mat. Nauk 15 (1960), 199-202. MR 0113079 (22:3920)
- [3] A. Kroó, On the distribution of points of maximal deviation in complex Čebyšev approximation, Anal. Math. 7 (1981), 257-263. MR 648490 (84j:30058)
- [4] G. G. Lorentz, Distribution of alternation points in uniform polynomial approximation, Proc. Amer. Math. Soc. 92 (1984), 401-403. MR 759662 (86e:41047)
- [5] D. J. Newman and H. S. Shapiro, Some theorems on Čebyšev approximation, Duke Math J. 30 (1963), 673-682. MR 0156138 (27:6070)
- [6]
A. Pinkus,
-widths in approximation theory, Springer-Verlag, Berlin, 1985. MR 774404 (86k:41001)
- [7] H. S. Shapiro, Topics in approximation theory, Lecture Notes in Math., Vol. 187, Springer-Verlag, Berlin, 1971. MR 0437981 (55:10902)
- [8] Sp. Tashev, On the distribution of the points of maximal deviation for the polynomials of best Chebyshev and Hausdorff approximations, Approximation and Function Spaces (Z. Ciesielski, ed.), North-Holland, Amsterdam, 1981, pp. 791-799. MR 649477 (83c:41029)
- [9] M. Tsuji, Potential theory in modern function theory, 2nd ed., Chelsea, New York, 1958. MR 0114894 (22:5712)
- [10] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., vol. 20, Amer. Math. Soc., Providence, R.I., 1935; 5th ed., 1969. MR 0218588 (36:1672b)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30E10, 41A10, 41A50
Retrieve articles in all journals with MSC: 30E10, 41A10, 41A50
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1988-0938669-X
Keywords:
Polynomial approximation,
extreme points,
Chebyshev polynomials,
best approximants
Article copyright:
© Copyright 1988
American Mathematical Society