Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Polynomially moving ergodic averages


Author: Mark Schwartz
Journal: Proc. Amer. Math. Soc. 103 (1988), 252-254
MSC: Primary 28D05
DOI: https://doi.org/10.1090/S0002-9939-1988-0938678-0
MathSciNet review: 938678
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given an increasing sequence of positive integers $ \left\{ {{m_n}} \right\}$, a non-decreasing sequence of positive integers $ \left\{ {{b_n}} \right\}$, and a measurable, measure-preserving ergodic transformation $ \tau $ on a probability space $ \left( {\Omega ,\mathcal{F},\mu } \right)$, the a.s. convergence of the moving averages $ {T_n}\left( f \right) = b_n^{ - 1}\sum\nolimits_{k = {m_n} + 1}^{{m_n} + {b_n}} {f\left( {{\tau ^k}} \right)} $ is considered, for $ f \in {L_p}\left( \Omega \right)$. A counterexample is constructed in the case of polynomial-like $ \left\{ {{m_n}} \right\}$.


References [Enhancements On Off] (What's this?)

  • [1] M. A. Akcoglu and A. del Junco, Convergence of averages of point transformations, Proc. Amer. Math. Soc. 49 (1975), 265-266. MR 0360999 (50:13446)
  • [2] A. del Junco and J. Rosenblatt, Counterexamples in ergodic theory and number theory, Math. Ann. 245 (1979), 185-197. MR 553340 (81d:10042)
  • [3] A. del Junco and J. M. Steele, Moving averages of ergodic processes, Metrika 24 (1977), 35-43. MR 0430209 (55:3216)
  • [4] J. Rosenblatt, Ergodic group actions, Ark. Math. (to appear). MR 861875 (88d:28024)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28D05

Retrieve articles in all journals with MSC: 28D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0938678-0
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society