Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A proportionality principle for partitioning problems


Author: Theodore P. Hill
Journal: Proc. Amer. Math. Soc. 103 (1988), 288-293
MSC: Primary 60E15; Secondary 05A17, 60A10
DOI: https://doi.org/10.1090/S0002-9939-1988-0938685-8
MathSciNet review: 938685
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In a general class of measure-partitioning or fair-division problems, the extremal case occurs when the measures are proportional. Applications are given to classical and recent fair-division problems, and to statistical decision theory, mathematical physics, Banach space theory, and inequalities for continuous random variables.


References [Enhancements On Off] (What's this?)

  • [1] T. Armstrong and K. Prikry, Liapounoff's Theorem for nonatomic, finitely-additive, bounded finite-dimensional vector-valued measures, Trans. Amer. Math. Soc. 266 (1981), 499-514. MR 617547 (82f:28008)
  • [2] L. Dubins and E. Spanier, How to cut a cake fairly, Amer. Math. Monthly 68 (1961), 1-17. MR 0129031 (23:B2068)
  • [3] A. Dvoretzky, A. Wald and J. Wolfowitz, Relations among certain ranges of vector measures, Pacific J. Math. 1 (1951), 59-74. MR 0043865 (13:331f)
  • [4] T. Hill, Determining a fair border, Amer. Math. Monthly 90 (1983), 438-442. MR 711642 (85b:28007)
  • [5] -, Equipartitioning common domains of nonatomic measures, Math. Z. 189 (1985), 415-419. MR 783565 (86e:28005)
  • [6] -, Partitioning general probability measures, Ann. Probab. 15 (1987), 804-813. MR 885145 (88d:60014)
  • [7] A. Lyapounov, Sur les fonctions-vecteurs complètement additives, Bull. Acad. Sci. URSS 4 (1940), 465-478. MR 0004080 (2:315e)
  • [8] J. Neyman, Un théorème d'existence, C. R. Acad. Sci. Paris Ser. A-B 222 (1946), 843-845. MR 0015697 (7:457h)
  • [9] K. Rao and M. Rao, Theory of charges, Academic Press, New York, 1983. MR 751777 (86f:28006)
  • [10] H. Steinhaus, Sur la division pragmatique, Econometrica (Supplement) 17 (1949), 315-319. MR 0039231 (12:515d)
  • [11] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Math. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1978. MR 0310533 (46:9631)
  • [12] K. Urbanik, Quelques théorèmes sur les mesures, Fund. Math. 41 (1955), 150-162. MR 0063427 (16:120d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60E15, 05A17, 60A10

Retrieve articles in all journals with MSC: 60E15, 05A17, 60A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0938685-8
Keywords: Cake-cutting inequalities, fair-division problems, partitioning problems, proportionality principle, convexity theorem
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society