Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Finite-dimensional complement theorems: examples and results


Authors: R. B. Sher and G. A. Venema
Journal: Proc. Amer. Math. Soc. 103 (1988), 299-306
MSC: Primary 57N25; Secondary 54C56
DOI: https://doi.org/10.1090/S0002-9939-1988-0938687-1
MathSciNet review: 938687
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Examples are given which show the necessity of various hypotheses in the known finite dimensional complement theorems. In addition, several positive results are presented which improve one direction of such theorems.


References [Enhancements On Off] (What's this?)

  • [Ch$ _{1}$] T. Chapman, On some applications of infinite dimensional manifolds to the theory of shape, Fund. Math. 76 (1972), 181-193. MR 0320997 (47:9530)
  • [Ch$ _{2}$] -, Shapes of finite-dimensional compacta, Fund. Math. 76 (1972), 261-276. MR 0320998 (47:9531)
  • [DV] E. Dyer and A. Vasquez, The asphericity of higher dimensional knots, Canad. J. Math. 25 (1973), 1132-1136. MR 0326708 (48:5051)
  • [Fr] M. Freedman, The disk theorem for four-dimensional manifolds, Proceedings of the International Congress of Mathematicians, Polish Scientific Publishers, Warsaw, 1983, pp. 647-663. MR 804721 (86m:57016)
  • [HI$ _{1}$] L. Husch and I. Ivanšić, Embedding compacta up to shape, Shape Theory and Geometric Topology, Springer-Verlag, Berlin, 1981, pp. 119-134. MR 643527 (83b:57008)
  • [HI$ _{2}$] -, On shape concordances, Shape Theory and Geometric Topology, Springer-Verlag, Berlin, 1981, pp. 135-149. MR 643528 (83a:57017)
  • [HI$ _{3}$] -, Shape domination and embedding up to shape, Compositio Math. 40 (1980), 152-166. MR 563539 (81h:55007)
  • [ISV] I. Ivanšić, R. Sher and G. Venema, Complement theorems beyond the trivial range, Illinois J. Math. 25 (1981), 209-220. MR 607023 (82i:57017)
  • [Le] J. Levine, Unknotting spheres in codimension two, Topology 4 (1965), 9-16. MR 0179803 (31:4045)
  • [LV] V. Liem and G. Venema, Stable shape concordance implies homeomorphic complements, Fund. Math. 126 (1986), 123-131. MR 843241 (87h:57021)
  • [MS] S. Mardešić and J. Segal, Shape theory: The inverse system approach, North-Holland, Amsterdam, 1982. MR 676973 (84b:55020)
  • [No] S. Nowak, On the relationships between shape properties of subcompacta of $ {S^n}$ and homotopy properties of their complements, preprint. MR 919289 (89d:57022)
  • [Sh$ _{1}$] R. Sher, Complement theorems in shape theory, Shape Theory and Geometric Topology, Springer-Verlag, Berlin, 1981, pp. 150-168. MR 643529 (83a:57018)
  • [Sh$ _{2}$] -, Complement theorems in shape theory II, Geometric Topology and Shape Theory, Springer-Verlag, Berlin, 1987, pp. 212-220. MR 922283 (89d:57023)
  • [Sh$ _{3}$] -, A complement theorem for shape concordant compacta, Proc. Amer. Math. Soc. 91 (1984), 123-132. MR 735578 (85g:57010)
  • [Su] D. Sumners, Homotopy torsion in codimension two knots, Proc. Amer. Math. Soc. 24 (1970), 229-240. MR 0253316 (40:6531)
  • [St$ _{1}$] J. Stallings, The embedding of homotopy types into manifolds, mimeographed notes, Princeton University.
  • [St$ _{2}$] -, The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos. Soc. 58 (1962), 481-488. MR 0149457 (26:6945)
  • [Ve$ _{1}$] G. Venema, Embeddings of compacta with shape dimension in the trivial range, Proc. Amer. Math. Soc. 55 (1976), 443-448. MR 0397738 (53:1596)
  • [Ve$ _{2}$] -, Neighborhoods of compacta in euclidean space, Fund. Math 109 (1980), 71-78. MR 594326 (82d:57006)
  • [Wh] J. H. C. Whitehead, Combinatorial homotopy I, Bull. Amer. Math. Soc. 55 (1949), 213-245. MR 0030759 (11:48b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57N25, 54C56

Retrieve articles in all journals with MSC: 57N25, 54C56


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0938687-1
Keywords: Shape theory, complement theorems, fundamental dimension, inessential loops condition, knot exteriors
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society