MORE NONDEVELOPABLE SPACES IN MOBI

J. CHABER

(Communicated by Dennis Burke)

ABSTRACT. We construct two spaces with a point-countable base, the first is not weakly θ-refinable, while the second is not a $\sigma\#$-space. Both spaces can be represented as open and compact images of metacompact developable Hausdorff spaces. This answers questions of H. R. Bennett and R. F. Gittings.

The first example of a nonweakly θ-refinable space with a point-countable base was constructed, with the use of the continuum hypothesis, in [GG]. In the first section of this paper we apply an idea from [GG] in order to get a ZFC example of such a space. Our construction is simpler than the example of a metalindelöf space which is not weakly θ-refinable from [Gr].

In the second section we show that the space constructed in the first section is an open and compact image of a metacompact developable Hausdorff space. Thus this space is an element of MOBI_2, where MOBI_i is the minimal class of T_i-spaces containing all metric spaces and invariant under open and compact mappings.

In the third section we apply the techniques of the first two sections in order to construct a space in MOBI_2 which is not a $\sigma\#$-space.

1. A nonweakly θ-refinable space with a point-countable base. It will be convenient to use the following definition [BL, Lemma 4]: a space K is weakly θ-refinable if every open cover of K has a refinement $\mathcal{A} = \bigcup\{\mathcal{A}_n : n \geq 1\}$ such that each \mathcal{A}_n is discrete in $\bigcup_{n=1}^{\infty} \mathcal{A}_n$.

Our construction will be based on an example of a space with a point-countable base which does not have a σ-point finite base [A]. The points of the space are functions from countable ordinals into ω and the base of neighborhoods of a function s consists of sets of the form

$$B(s,m) = \{t \supseteq s : t = s \text{ or } t(\text{dom } s) \geq m\}.$$

Let S be the space described above and put $B(s) = B(s,0)$ for $s \in S$. Clearly, every nonempty open subset of S contains a set $B(s)$ for an $s \in S$ and any intersection of a decreasing sequence of sets of the form $B(s)$ is again a set of this form. In particular, S is a Baire space.

Every open cover of the space S has a disjoint open refinement [A, M]. We shall destroy the covering properties of S with the help of the space ω_1 of the countable ordinals (see [GG]).

Put

$$S^* = \{(\alpha, s) \in \omega_1 \times S : \alpha \leq \text{dom } s\}$$

Received by the editors October 23, 1986 and, in revised form, March 23, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 54D18, 54C10.

©1988 American Mathematical Society

0002-9939/88 $1.00 + .25 per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
and consider S^* with the topology inherited from $\omega_1 \times S$. We shall show that S^* is not weakly θ-refinable.

Let $U_\delta = \{ (\alpha, s) \in S^* : \alpha \leq \delta \}$ and $\mathcal{U} = \{ U_\delta : \delta \in \omega_1 \}$. Suppose that S^* is weakly θ-refinable, then there exists a refinement $\mathcal{A} = \bigcup \{ \mathcal{A}_n : n \geq 1 \}$ of \mathcal{U} such that each \mathcal{A}_n is discrete in $\bigcup \mathcal{A}_n$.

By induction on $\alpha \in \omega_1$ construct sequences $\langle s_\alpha \rangle_{\alpha \in \omega_1}$ of elements of S, $\langle n_\alpha \rangle_{\alpha \in \omega_1}$ of natural numbers and $\langle \gamma_\alpha \rangle_{\alpha \in \omega_1}$ of countable ordinals such that for each $\alpha > 0$,

(i) $s_\alpha \supset \bigcup \{ s_\beta : \beta < \alpha \}$ and $(\alpha, s_\alpha) \in S^*$,

(ii) $\big\{ \alpha \times B(s) \big\} \cap \bigcup \mathcal{A}_{n_\alpha} \neq \emptyset$ for any $s \supset s_\alpha$,

(iii) $\gamma_\alpha < \alpha$ and $(\gamma_\alpha, \alpha) \times B(s_\alpha)$ intersects at most one element of \mathcal{A}_{n_α}.

Start by choosing $s_0 = \emptyset$, $n_0 = 0$ and $\gamma_0 = 0$. Suppose that s_β, n_β and γ_β have been defined for $\beta < \alpha$.

We shall define s_α by consecutively extending $\bigcup \{ s_\beta : \beta < \alpha \}$. First choose $s' \supset \bigcup \{ s_\beta : \beta < \alpha \}$ with $\text{dom } s' \geq \alpha$. Clearly, any extension s_α of s' will satisfy (i). Since $\{ \alpha \} \times B(s')$ is covered by $\{ \bigcup \mathcal{A}_n : n \geq 1 \}$, one can use the Baire property of S in order to find an $n_\alpha \geq 1$ and an $s'' \supset s'$ such that $\bigcup \mathcal{A}_{n_\alpha}$ is dense in $\{ \alpha \} \times B(s'')$.

Clearly, any extension s_α of s'' will satisfy (ii) with respect to this n_α. In particular, there exists an $s''' \supset s''$ such that $(\alpha, s''') \in \bigcup \mathcal{A}_{n_\alpha}$ and, since \mathcal{A}_{n_α} is discrete in $\bigcup \mathcal{A}_{n_\alpha}$, (α, s''') has a neighborhood of the form $(\gamma_\alpha, \alpha) \times B(s''', m)$ intersecting exactly one element of \mathcal{A}_{n_α}. Clearly, $s_\alpha = s''' \cup \{ (\text{dom } s'''', m) \}$ satisfies (iii) with respect to these n_α and γ_α and the inductive step is complete.

Observe that (ii) and (iii) imply that for each $\beta > 0$, there exists an $A_\beta \in \mathcal{A}_{n_\beta}$ which intersects $\{ \beta \} \times B(s)$ for all $s \supset s_\beta$.

In order to obtain a contradiction, use standard properties of ω_1 to find an $n \geq 1$, $\gamma \in \omega_1$ and uncountable set $E \subseteq \omega_1$ such that $n_\alpha = n$ and $\gamma_\alpha = \gamma$ for $\alpha \in E$. Pick a $\beta \in E$ and a $\delta \in \omega_1$ such that $A_\beta \subseteq U_\delta$. If $\alpha \in E$ and $\alpha > \beta$, then $A_\alpha \neq A_\beta$ while $(\gamma, \delta) \times B(s_\alpha) \supset \{ \beta \} \times B(s_\beta)$, so $(\gamma, \alpha) \times B(s_\alpha)$ intersects two different elements A_α and A_β of \mathcal{A}_n, which contradicts (iii).

It is easy to see that the space S^* has a point-countable base. In fact, it is a first-countable space with a co-countable neighbournet.

2. Spaces with a co-countable neighbournet. Recall that a neighbournet for a space Y is a relation $V \subseteq Y \times Y$ such that for each $y \in Y$, $y \in \text{Int } V(y)$, where $R(y) = \{ y' \in Y : (y, y') \in R \}$ for a relation $R \subseteq Y \times Y$ [J1]. We shall only consider neighbournets V such that $V(y)$ is open for $y \in Y$. The neighbournet V is called co-countable (co-finite) if $V^{-1}(y)$ is countable (finite) for $y \in Y$ [J2].

It is easy to check that first-countable T_1-spaces with a co-countable (co-finite) neighbournet have a point-countable base (are σ-discrete metacompact and developable [J2]).

Observe that the space S^* has a co-countable neighbournet. Indeed, the collection $\{ B(\alpha, s) : (\alpha, s) \in S^* \}$, where $B(\alpha, s) = [0, \alpha] \times B(s)$, defines a co-countable neighbournet in S^*, for $(\beta, t) \in B(\alpha, s)$ implies that $s \subset t$ and $\alpha < \text{dom } s \leq \text{dom } t$.

In [J2, Theorems 3, 4] (first-countable) T_1-spaces with co-countable neighbournets have been characterized as images of "nice" spaces under open countable-to-one mappings. We shall modify the construction of open mappings from [J2] in order to get open and compact mappings.
LEMMA. If Y is a T_1-space with a co-countable neighbournet V, then there exists a Hausdorff space X with a co-finite neighbournet and an open and compact countable-to-one mapping f from X onto Y. Moreover, if Y is first-countable, then so is X.

PROOF. As in [J2, Lemma 5], let $I(Y, V)$ be the set of all injections $\sigma: \{0, \ldots, n\} \to Y$ such that $e(\sigma)$ defined as $\sigma(n)$ is in the intersection of all $V(\sigma(k))$, $k = 0, \ldots, n$. The latter restriction assures that $\{\sigma: e(\sigma) = y\} \subset \{\sigma: \sigma(\text{dom } \sigma) \subset V^{-1}(y)\}$ for $y \in Y$, hence the natural projection e of $I(Y, V)$ onto Y is countable-to-one. The basic open sets containing σ are of the form

$$B(\sigma, U) = \{\tau \supset \sigma: \tau(\text{dom } \tau \setminus \text{dom } \sigma) \subset U\},$$

where U is an open subset of Y containing $e(\sigma)$.

Observe that, if $\tau \in B(\sigma, U) \cap B(\sigma', U')$, then $\sigma, \sigma' \subset \tau$ and, assuming that $\sigma \subset \sigma'$, $\sigma' \in B(\sigma, U)$.

Clearly, the projection $e: I(Y, V) \to Y$ is continuous, open [J2] and, from the observation above, it follows that the fibers of e are discrete. Thus $I(Y, V)$ is a T_1-space and, again, the observation above, implies that it is a collectionwise (in fact, monotonically) normal space. Moreover, the collection $\{B(\sigma, Y): \sigma \in I(Y, V)\}$ defines a co-finite neighbournet on $I(Y, V)$.

We shall modify $I(Y, V)$ by adding a limit point to each infinite fiber of e.

Put $X = I(Y, V) \cup \{y \in Y: e^{-1}(y) \text{ is infinite}\}$ and consider X with a topology such that $I(Y, V)$ is open in X, while for $y \in X \setminus I(Y, V)$ basic neighbourhoods of y are of the form

$$B(y, U, F) = \{y\} \cup \bigcup\{B(\sigma, U): \sigma \in e^{-1}(y) \setminus F\},$$

where U is an open subset of Y containing y and F is a finite subset of $e^{-1}(y)$.

It is easy to check that X is a Hausdorff space and the collection $\{B(\sigma, Y): \sigma \in I(Y, V)\} \cup \{B(y, Y, \emptyset): y \in X \setminus I(Y, V)\}$ defines a co-finite neighbournet on X. Clearly, if Y is a first-countable space, then X is first-countable too.

Define $f: X \to Y$ as the combination of e and the identity on $X \setminus I(Y, V)$. Clearly, f is a continuous open and compact countable-to-one mapping.

If Y in the above construction is the space S^*, then one gets

EXAMPLE. An open and compact mapping of a σ-discrete metacompact developable Hausdorff space onto the space S^* which is not weakly θ-refinable.

The example answers Question c from [B2] repeated in [G, Question 1]. Furthermore, if the space Y in the lemma is first-countable, then $I(Y, V)$ is developable and collectionwise normal, hence, it is then a metrizable space (see [J2]). Thus X is then a locally metrizable σ-discrete metacompact space and, therefore, X can be represented as an open finite-to-one image of a σ-discrete metrizable space. In particular, S^* is in the class MOBI$_2$, which gives an answer to Question 1 from [B1].

The above reasoning and the fact that open mappings with separable fibers preserve the property of having a co-countable neighbournet (see [J2, Proposition 2]) give

THEOREM. For a Hausdorff space Y the following conditions are equivalent:

(i) Y is a first-countable space with a co-countable neighbournet,
(ii) \(Y \) is an open and compact countable-to-one image of a \(\sigma \)-discrete metacompact developable Hausdorff space,

(iii) \(Y \) is in the minimal class of Hausdorff spaces containing all \(\sigma \)-discrete metric spaces and invariant under open and compact mappings.

In the next section we give a method of constructing spaces with co-countable neighbourhoods based on the construction of the space \(S \) and spaces \(I(Y,V) \) and we use this method in order to answer the remaining part of Question 1 from [G] concerning the invariantness of \(\sigma^\# \)-spaces.

3. \(\sigma^\# \)-spaces. According to the standard terminology, a collection \(\mathcal{A} \) of subsets of a space \(Y \) will be called \(T_1(T_0) \)-separating if for each two distinct points \(y \) and \(y' \) of \(Y \) there exists an \(A \in \mathcal{A} \) such that \(y \notin A \) and \(y' \notin A \) (or \(y \in A \) and \(y' \notin A \)). The collection \(\mathcal{A} \) is closure-preserving (\(\sigma \)-closure-preserving) if

\[
\bigcup \{A \cap A' : A \in \mathcal{A}'\} = \bigcup \{A : A \in \mathcal{A}'\}
\]

for any subcollection \(\mathcal{A}' \) of \(\mathcal{A} \) (if \(\mathcal{A} \) can be represented as a union of countably many closure-preserving subcollections). The space \(Y \) is called \(\sigma^\# \)-space if it has a \(\sigma \)-closure-preserving \(T_1 \)-separating collection of closed sets.

We shall answer the part of Question 1 in [G] concerning \(\sigma^\# \)-spaces by constructing a Hausdorff first-countable space \(T \) with a co-countable neighbourhood which is not a \(\sigma^\# \)-space. By virtue of the results of the previous section, the space \(T \) is then in MOBI2.

One can check that the space \(S^\ast \) constructed in the first section is a \(\sigma^\# \)-space. Moreover, any space with a co-countable neighbourhood has a closure-preserving cover by countable closed sets [J2, Proposition 1] and one can modify this cover so that it is, in addition, a \(T_0 \)-separating collection (see 4.2). The example that we are going to construct shows that this does not imply the existence of a \(\sigma \)-closure-preserving \(T_1 \)-separating closed collection.

Example. A first-countable Hausdorff space \(T \) with a co-countable neighbourhood which is not a \(\sigma^\# \)-space.

Let \(Z = C_1 \cup C_2 \) be the Alexandroff double circle. As in [E, 3.1.26], \(C_1 \) is the topological circle, \(C_2 \) is the set of isolated points of \(Z \), \(p \) is the projection of \(C_1 \) onto \(C_2 \) from the joint center of \(C_1 \) and \(C_2 \) and, for \(z \in C_1 \), the basic open sets containing \(z \) are of the form \(U_j(z) = V_j(z) \cup \{p(V_j(z) \setminus \{z\})\} \), where \(j \geq 1 \) and \(V_j(z) \) is an open arc of length \(1/j \) in \(C_1 \) centered at \(z \).

We shall modify \(Z \) in order to obtain the space \(T \). The points of \(T \) will be one-to-one functions from nonlimit countable ordinals into \(Z \). For \(s \in T \) with \(\text{dom } s = \alpha + 1 \), by \(e(s) \) we denote \(s(\alpha) \). The basic open sets containing \(s \) are of the form

\[
B(s,U) = \{t \supseteq s : e(t) \in U\},
\]

where \(U \) is an open subset of \(Z \) containing \(e(s) \).

It is easy to see that \(T \) is a first-countable Hausdorff (but not regular) space and the collection \(\{B(s,Z) : s \in T\} \) defines a co-countable neighbourhood in \(T \).

Suppose that \(T \) is a \(\sigma^\# \)-space and let \(\mathcal{E} = \bigcup \{E_n : n \geq 1\} \) be a \(T_1 \)-separating collection of closed subsets of \(T \) such that each \(E_n \) is closure-preserving. Choose a one-to-one sequence \(\langle z_\beta \rangle_{\beta \in \omega_1} \) of elements of \(C_1 \) and denote \(s_\alpha = \langle z_\beta \rangle_{\beta \in \alpha} \in T \). For each \(\alpha \in \omega_1 \) find a decreasing sequence \(\{W_n(z_\alpha)\}_{n \geq 1} \) of open subsets
of Z containing $z_\alpha = e(s_\alpha)$ such that each $W_n(z_\alpha) = U_j(z_\alpha)$ for a $j \geq n$ and $B(s_\alpha, W_n(z_\alpha)) \cap \{E \in \mathcal{Z}_n : s_\alpha \notin E\} = \emptyset$.

From the fact that C_1 is hereditarily separable, it follows that there exists an $\alpha \in \omega_1$ such that for each $\beta > \alpha$ and $n \geq 1$

$$C_1 \cap \bigcup\{W_n(z_\gamma) : \gamma \geq \alpha\} = C_1 \cap \bigcup\{W_n(z_\gamma) : \gamma > \beta\}.$$

In particular, for each $n \geq 1$, there exists a $\beta_n > \alpha$ such that $z_\alpha \in W_n(z_{\beta_n})$ and since each $W_n(z_\beta)$ is of the form $U_j(z_\beta)$ for $j > n$, we obtain that $p(z_\alpha) \in W_n(z_{\beta_n})$ and $(z_{\beta_n})_{n \geq 1}$ converges to z_α in C_1.

Let γ be a countable ordinal greater than $\sup\{\beta_n : n \geq 1\}$ and define an $s \in T$ with dom $s = \gamma + 1$ by putting $s(\beta) = z_\beta$ for $\beta < \gamma$ and $s(\gamma) = p(z_\alpha) \in C_2$. If $n \geq 1$ and $E \in \mathcal{Z}_n$ are such that $s \in E$ and $s_\alpha \notin E$, then $B(s_\alpha, W_n(z_\alpha)) \cap E = \emptyset$. Find an $m \geq n$ for which $z_{\beta_m} \in W_n(z_\alpha)$. Clearly, $s_{\beta_m} \in B(s_\alpha, W_n(z_\alpha))$ and, consequently, $s_{\beta_m} \notin E$, which implies $B(s_{\beta_m}, W_n(z_{\beta_m})) \cap E = \emptyset$. However, $e(s) = p(z_\alpha) \in W_m(z_{\beta_m}) \subset W_n(z_{\beta_m})$, hence $s \in B(s_{\beta_m}, W_n(z_{\beta_m}))$ and this contradicts $s \notin E$.

4. Final remarks.

4.1. The space S from the first section is an easy example of a non-quasi-developable space in MOBI$_2$. In fact, the space S is not even a primitive $\sigma^\#$.space in the sense of [Ch2], which implies that S is neither a σ-space nor a space with a primitive base. An easy way to see that S is not a primitive $\sigma^\#$.space is to use a game-theoretic characterization of this property given, implicitly, in [M, Theorem 7.3].

Consider the following two-person game in a space Y: players I and II alternately choose nonempty subsets $C_1 \supset D_1 \supset C_2 \supset D_2 \supset \cdots$ of Y such that each D_n is relatively open in C_n. Player II (choosing D_n’s) wins if $\bigcap\{C_n : n \geq 1\}$ contains at most one point. The space Y is a primitive $\sigma^\#$.space iff player II has a (stationary) winning strategy in this game. In S player I has a stationary winning strategy, namely, I wins by choosing at each stage of the game a set of the form $B(s)$ contained in the set recently chosen by II.

Observe that S is a $\sigma^\#$.space which is not a primitive $\sigma^\#$.space. This improves Example 1 in [Ch2] and shows that the term “primitive $\sigma^\#$.space” suggested in [Ch2] should be changed.

4.2. The following slight strengthening of Proposition 1 in [J2] (see the proof of (c) \Rightarrow (a) in [F, Theorem 2.2]) clarifies the structure of T_1-spaces with a co-countable neighbournet:

Proposition. A T_1-space Y has a co-countable neighbournet iff there exists a partial order \preceq on Y such that $\{y' : y' \preceq y\}$ is countable and $\{y' : y' \succeq y\}$ is open for $y \in Y$.

Observe that in the construction of X in §2, one can consider only sequences σ which are increasing with respect to the above partial order. The examples of spaces in MOBI$_3$ in [Ch1] were obtained in this way from spaces Y with the partial order having two levels.

4.3. Theorem 2.2 in [F] gives several conditions characterizing spaces with a co-countable neighbournet in the class of T_1-spaces with a point-countable base. We give another such condition, which shows that the reflection principles S_1 and S_2 from [F] are equivalent (see Conjecture 1 in [F, 6]).
PROPOSITION. Let Y be a T_0-space with a point-countable base \mathcal{U}. For each $y \in Y$ fix an enumeration $e(y) = (U_i(y))_{i \geq 1} \in \mathcal{U}^\omega$ (not necessarily one-to-one) of all the members of \mathcal{U} containing y. Consider \mathcal{U}^ω with the Baire metric and let $M = e(Y) \subset \mathcal{U}^\omega$. Then Y has a co-countable neighbournet iff M is σ-discrete.

PROOF. Suppose that Y has a co-countable neighbournet. Observe that e is one-to-one and $e^{-1} : M \to Y$ is continuous. Clearly, this gives a co-countable neighbournet on M and, since M is a metric space, it is σ-discrete (see [F or J1, 4.8]).

In order to prove the other implication, assume that $M' = e(Y') \subset M$ is $1/j$-discrete and define $V(y') = \bigcap\{U_i(y') : i \leq j\}$ for $y' \in Y'$. If $y \in Y$ and $y \in V(y')$ for a $y' \in Y'$, then $U_i(y')$ is a term of $e(y)$ for $i \leq j$ and, consequently, the number of such $y' \in Y'$ is countable. Since M is a countable union of such M', this shows that Y has a co-countable neighbournet.

4.4. The construction from [B3] showing that weak θ-refinability is not invariant under open and compact mappings can be generalized as follows.

PROPOSITION. If a Hausdorff space Y can be covered by an open collection \mathcal{G} such that each element of \mathcal{G} has a co-finite (co-countable) neighbournet, then Y is an open and compact image of a Hausdorff space with a co-finite neighbournet.

PROOF. Suppose first that each $G \in \mathcal{G}$ has a co-finite neighbournet V_G. Let e be the canonical mapping of the topological sum X' of the elements of \mathcal{G} onto Y. Put $X = X' \cup \{y \in Y : e^{-1}(y) \text{ is infinite}\}$ and consider X with the topology such that X' is open in X and the basic open sets containing $y \in X \setminus X'$ are of the form

$$B(y, U, \mathcal{G}) = \{y\} \cup \{G \cap V_G(y) \cap U : y \in G \in \mathcal{G} \setminus \mathcal{G}\},$$

where U is an open subset of Y containing y and \mathcal{G} is a finite subcollection of \mathcal{G}.

It is easy to see that X is a Hausdorff space with a co-finite neighbournet and the natural extension f of e is an open and compact mapping of X onto Y.

If W_G is a co-countable neighbournet in $G \in \mathcal{G}$, then G in the above construction should be replaced with a space $X(G)$ constructed from $I(G, W_G)$ as in §2.

4.5. The nondevelopable Čech complete space with a point-countable base from [D] can be represented as an open and compact countable-to-one image of a meta-compact Moore space and, therefore, is in MOBI$_3$.

REFERENCES

[BL] H. R. Bennett and D. J. Lutzer, A note on weak θ-refinability, General Topology Appl. 2 (1972), 49-54.
MORE NONDEVELOPABLE SPACES IN MOBI

INSTITUTE OF MATHEMATICS, UNIVERSITY OF WARSAW, 00 901 WARSAWA, POLAND

PKiN IXp

Current address: Department of Mathematics, Texas Tech University, Lubbock, Texas 79409