Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The cancellation problem for function fields

Author: James K. Deveney
Journal: Proc. Amer. Math. Soc. 103 (1988), 363-364
MSC: Primary 12F20
MathSciNet review: 943046
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L$ be a finitely generated extension of $ K$. We call $ L$ rigid over $ K$ if the set of $ K$-endomorphisms of $ L$ is finite. If $ L$ is rigid over $ K$ and $ x$ is transcendental over $ L$, then $ L$ is invariant under automorphisms of $ L\left( x \right)$ over $ K$ (Theorem 2). This result is used to show that the cancellation property holds for function fields of varieties of general type in characteristic 0.

References [Enhancements On Off] (What's this?)

  • [1] A. Beauville, J.-L. Colliot-Thélène, J.-J. Sansuc, H. P. F. Swinnerton-Dyer, Variétés stablement rationnelles non rationnnelles, Ann. of Math. (2) 121 (1985), 283-318. MR 786350 (86m:14009)
  • [2] J. Deveney, Automorphism groups of ruled function fields and a problem of Zariski, Proc. Amer. Math. Soc. 90 (1984), 178-180. MR 727227 (85f:12010)
  • [3] M. Martin-Deschamps and R. Lewin-Menegaux, Applications rationnelles separables dominantes sur une variete de type general, Bull. Soc. Math. France 106 (1978), 279-287. MR 515404 (80m:14008)
  • [4] M. Nagata, A theorem on valuation rings and its applications, Nagoya Math. J. 29 (1967), 85-91. MR 0207688 (34:7503)
  • [5] J. Ohm, The ruled residue theorem for simple transcendental extensions of valued fields, Proc. Amer. Math. Soc. 89 (1983), 16-18. MR 706500 (85b:12010)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12F20

Retrieve articles in all journals with MSC: 12F20

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society