Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Subnormal subgroups in $ U({\bf Z}G)$


Authors: Jairo Gonçalves, Jürgen Ritter and Sudarshan Sehgal
Journal: Proc. Amer. Math. Soc. 103 (1988), 375-382
MSC: Primary 20C05; Secondary 16A26
MathSciNet review: 943049
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ U$ be the unit group of the integral group ring of a finite group $ G$. We prove that every subgroup of $ U$ containing $ G$ and almost subnormal in $ U$ contains a noncyclic free group unless $ G$ is abelian or a Hamiltonian $ 2$-group.


References [Enhancements On Off] (What's this?)

  • [1] Anthony Bak, Subgroups of the general linear group normalized by relative elementary groups, Algebraic 𝐾-theory, Part II (Oberwolfach, 1980) Lecture Notes in Math., vol. 967, Springer, Berlin-New York, 1982, pp. 1–22. MR 689387
  • [2] Marshall Hall Jr., The theory of groups, The Macmillan Co., New York, N.Y., 1959. MR 0103215
  • [3] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. MR 0144979
  • [4] B. Hartley and P. F. Pickel, Free subgroups in the unit groups of integral group rings, Canad. J. Math. 32 (1980), no. 6, 1342–1352. MR 604689, 10.4153/CJM-1980-104-3
  • [5] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
  • [6] A. G. Kurosh, The theory of groups. II, Chelsea, New York, 1956.
  • [7] Morris Newman, Integral matrices, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 45. MR 0340283
  • [8] W. R. Scott, Group theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0167513
  • [9] Jean-Pierre Serre, Le problème des groupes de congruence pour SL2, Ann. of Math. (2) 92 (1970), 489–527 (French). MR 0272790
  • [10] Sudarshan K. Sehgal, Topics in group rings, Monographs and Textbooks in Pure and Applied Math., vol. 50, Marcel Dekker, Inc., New York, 1978. MR 508515
  • [11] J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270. MR 0286898

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20C05, 16A26

Retrieve articles in all journals with MSC: 20C05, 16A26


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0943049-7
Article copyright: © Copyright 1988 American Mathematical Society