Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


An inequality for the integral means of a Hadamard product

Author: Miroslav Pavlović
Journal: Proc. Amer. Math. Soc. 103 (1988), 404-406
MSC: Primary 30A10; Secondary 30D55
MathSciNet review: 943056
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Motivated by Colzani's paper [1] we prove that

$\displaystyle {M_q}(r,f * g) \leq {(1 - r)^{1 - 1/p}}\left\Vert f \right\Vert p\left\Vert g \right\Vert q,\quad \;0{\text{ < }}r{\text{ < }}1,$

where $ 0{\text{ < }}p{\text{ < }}1,p \leq q \leq \infty $ and $ f * g$ is the Hadamard product of $ f \in {H^p}$ and $ g \in {H^q}$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A10, 30D55

Retrieve articles in all journals with MSC: 30A10, 30D55

Additional Information

PII: S 0002-9939(1988)0943056-4
Keywords: Integral means, Hadamard product
Article copyright: © Copyright 1988 American Mathematical Society