Support points of subordination families

Author:
D. J. Hallenbeck

Journal:
Proc. Amer. Math. Soc. **103** (1988), 414-416

MSC:
Primary 30C80

DOI:
https://doi.org/10.1090/S0002-9939-1988-0943058-8

MathSciNet review:
943058

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the set of functions subordinate to a function analytic in the unit disc . Let denote the closed convex hull of and supp the set of support points of . We prove the following

Theorem. *Let* *be analytic in* *and satisfy*

(1) *and*

(2) *where* *is analytic in* , *continuous in* , *and* . *Then supp* .

**[1]**Y. Abu-Muhanna,*Variability regions and support points of subordinate families*, J. London Math. Soc. (2)**29**(1984), 477-484 MR**754934 (85j:30044)****[2]**-,*Subordination and extreme points*, Complex Variables**9**(1987), 91-100. MR**916919 (89c:30055)****[3]**L. Brickman, T. H. MacGregor and D. R. Wilken,*Convex hulls of some classical families of univalent functions*, Trans. Amer. Math. Soc.**156**(1971), 91-107. MR**0274734 (43:494)****[4]**P. C. Cochrane and T. H. MacGregor,*Fréchet differentiable functionals and support points for families of analytic functions*, Trans. Amer. Math. Soc.**236**(1978), 75-92. MR**0460611 (57:604)****[5]**D. J. Hallenbeck and T. H. MacGregor,*Support points of families of analytic functions described by subordination*, Trans. Amer. Math. Soc.**278**(1983), 523-545. MR**701509 (84j:30023)****[6]**-,*Linear problems and convexity techniques in geometric function theory*, Pitman, 1984.**[7]**O. Toeplitz,*Die linearen volkommenen Räume der Funktionentheorie*, Comment. Math. Helv.**23**(1949), 222-242. MR**0032952 (11:372f)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30C80

Retrieve articles in all journals with MSC: 30C80

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0943058-8

Keywords:
Support points,
subordination

Article copyright:
© Copyright 1988
American Mathematical Society