Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Local uncertainty inequalities for compact groups


Authors: John F. Price and Alladi Sitaram
Journal: Proc. Amer. Math. Soc. 103 (1988), 441-447
MSC: Primary 43A30
DOI: https://doi.org/10.1090/S0002-9939-1988-0943063-1
MathSciNet review: 943063
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Conditions are established on $ \alpha ,\beta \in {\mathbf{R}}$ for there to exist a constant $ K = K(\alpha ,\beta )$ such that

$\displaystyle \sum\limits_{\gamma \in E} {d(\gamma )\operatorname{tr} (\hat f{{... ...{(\gamma )}^2}} } \right)}^\alpha }{{\left\Vert {{w^\beta }f} \right\Vert}_2}} $

for all $ f \in {L^1}(G)$ and $ E \subseteq \hat G$ where $ G$ is a compact metric group, $ \hat G$ is its dual, $ \hat f$ is the Fourier transform of $ f$ and $ w:G \to {{\mathbf{R}}^ + }$ is the function taking $ x \in G$ to the area of the ball in $ G$ with centre $ e$ and $ x$ on its boundary. This is followed by a partial analogy for compact riemannian manifolds.

References [Enhancements On Off] (What's this?)

  • [1] W. G. Faris, Inequalities and uncertainty principles, J. Math. Phys. 19 (1978), 461-466. MR 0484134 (58:4066)
  • [2] E. Hewitt and K. A. Ross, Abstract harmonic analysis. vol. II, Springer-Verlag, Berlin, 1970. MR 551496 (81k:43001)
  • [3] E. Hewitt and K. Stromberg, Real and abstract analysis, Springer-Verlag, New York, 1965. MR 0367121 (51:3363)
  • [4] J. F. Price, Inequalities and local uncertainty principles, J. Math. Phys. 27 (1983), 1711-1714. MR 709504 (85e:81056)
  • [5] -, Sharp local uncertainty inequalities, Studia Math. 85 (1986), 37-45. MR 879414 (88f:42029)
  • [6] J. F. Price and P. C. Racki, Local uncertainty inequalities for Fourier series, Proc. Amer. Math. Soc. 93 (1985), 245-251. MR 770530 (86e:42018)
  • [7] J. F. Price and A. Sitaram, Local uncertainty inequalities for locally compact groups, Trans. Amer. Math. Soc. (to appear). MR 946433 (89h:22017)
  • [8] A. Terras, Harmonic analysis on symmetric spaces and applications, vol. I, Springer-Verlag, New York, 1985. MR 791406 (87f:22010)
  • [9] N. J. Vilenkin, Special functions and the theory of group representations, Transl. Math. Monographs, vol. 22, Amer. Math. Soc., Providence, R.I., 1968. MR 0229863 (37:5429)
  • [10] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott-Foresmann, 1971. MR 0295244 (45:4312)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A30

Retrieve articles in all journals with MSC: 43A30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0943063-1
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society