Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

$ p$-harmonic functions in the plane


Author: Juan J. Manfredi
Journal: Proc. Amer. Math. Soc. 103 (1988), 473-479
MSC: Primary 35J60; Secondary 30C60, 31A30
MathSciNet review: 943069
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given $ p > 1$, let $ u$ be a solution to $ \operatorname{div}(\nabla u{\vert^{p - 2}}\nabla u) = 0$, on a domain $ \Omega $ of the plane. Using the theory of quasiregular mappings we prove that the zeros of $ \nabla u$ are isolated in $ \Omega $, obtain bounds for the Hölder exponent of $ \nabla u$ and prove a strong form of the comparison principle.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35J60, 30C60, 31A30

Retrieve articles in all journals with MSC: 35J60, 30C60, 31A30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1988-0943069-2
PII: S 0002-9939(1988)0943069-2
Article copyright: © Copyright 1988 American Mathematical Society