Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Small sets of infinite type are benign for the $ \overline\partial$-Neumann problem


Author: Harold P. Boas
Journal: Proc. Amer. Math. Soc. 103 (1988), 569-578
MSC: Primary 32F20; Secondary 35N15
DOI: https://doi.org/10.1090/S0002-9939-1988-0943086-2
MathSciNet review: 943086
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An explicit construction shows that the $ \bar \partial $-Neumann operator and the Bergman and Szegő projections are globally regular in every smooth bounded pseudoconvex domain whose set of boundary points of infinite type has Hausdorff two-dimensional measure equal to zero. On the other hand there are examples of domains with globally regular $ \bar \partial $-Neumann operator but whose infinite-type points fill out an open subset of the boundary.


References [Enhancements On Off] (What's this?)

  • [1] David E. Barrett, Regularity of the Bergman projection and local geometry of domains, Duke Math. J. 53 (1986), 333-343. MR 850539 (87j:32073)
  • [2] Steven R. Bell and Harold P. Boas, Regularity of the Bergman projection in weakly pseudoconvex domains, Math. Ann. 257 (1981), 23-30. MR 630644 (83b:32021)
  • [3] Steve Bell and David Catlin, Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), 385-396. MR 659947 (84b:32037a)
  • [4] Steven R. Bell and Ewa Ligocka, A simplification and extension of Fefferman's theorem on biholomorphic mappings, Invent. Math. 57 (1980), 283-289. MR 568937 (81i:32017)
  • [5] Harold P. Boas, The Szegő projection: Sobolev estimates in regular domains, Trans. Amer. Math. Soc. 300 (1987), 109-132. MR 871667 (88d:32030)
  • [6] Harold P. Boas, So-Chin Chen, and Emil J. Straube, Exact regularity of the Bergman and Szegő projections on domains with partially transverse symmetries, preprint. MR 971689 (90a:32032)
  • [7] David W. Catlin, Global regularity of the $ \bar \partial $-Neumann problem, Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, R.I., 1984, pp. 39-49. MR 740870 (85j:32033)
  • [8] David Catlin, Subelliptic estimates for the $ \bar \partial $-Neumann problem on pseudoconvex domains, Ann. of Math. 126 (1987), 131-191. MR 898054 (88i:32025)
  • [9] So-Chin Chen, Regularity of the Bergman projection on domains with partial transverse symmetries, Math. Ann. 277 (1987), 135-140. MR 884651 (88e:32034)
  • [10] So-Chin Chen, Global regularity of the $ \bar \partial $-Neumann problem on circular domains, preprint.
  • [11] John P. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. 115 (1982), 615-637. MR 657241 (84a:32027)
  • [12] Jacqueline Detraz, Classes de Bergman de fonctions harmoniques, Bull. Soc. Math. France 109 (1981), 259-268. MR 623793 (83m:31006)
  • [13] Klas Diederich and John Erik Fornæss, Pseudoconvex domains: existence of Stein neighborhoods, Duke Math. J. 44 (1977), 641-662. MR 0447634 (56:5944)
  • [14] -, Boundary regularity of proper holomorphic mappings, Invent. Math. 67 (1982), 363-384. MR 664111 (84b:32037b)
  • [15] -, Stein neighborhoods for finite preimages of regular domain, Manuscripta Math. 50 (1985), 11-27. MR 784137 (86j:32031)
  • [16] G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Princeton Univ. Press, Princeton, N.J., 1972. MR 0461588 (57:1573)
  • [17] J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I, Ann. of Math. 78 (1963), 112-148; II, Ann. of Math. 79 (1964), 450-472. MR 0153030 (27:2999)
  • [18] -, Global regularity for $ \bar \partial $ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273-292. MR 0344703 (49:9442)
  • [19] -, A survey of the $ \bar \partial $-Neumann problem, Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, R.I., 1984, pp. 137-145.
  • [20] J. J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443-492. MR 0181815 (31:6041)
  • [21] Ewa Ligocka, The regularity of weighted Bergman projections, Seminar on Deformations (Proceedings, Łódó-Warsaw 1982/84), ed. by J. Ławrynowicz, Lecture Notes in Math., vol. 1165, Springer, New York, Berlin and Heidelberg, 1985, pp. 197-203. MR 825756 (87d:32044)
  • [22] Zeev Nehari, Conformal mapping, Dover, New York, 1952. MR 0045823 (13:640h)
  • [23] I. Ramadanov, Sur une propriété de la fonction de Bergman, C. R. Acad. Bulgare Sci. (Dokl. Bolgar. Akad. Nauk) 20 (1967), 759-762. MR 0226042 (37:1632)
  • [24] R. Michael Range, The $ \bar \partial $-Neumann operator on the unit ball in $ {{\mathbf{C}}^n}$, Math. Ann. 266 (1984), 449-456. MR 735527 (85g:32026)
  • [25] Nessim Sibony, Une classe de domaines pseudoconvexes, Duke Math. J. 55 (1987), 299-319. MR 894582 (88g:32036)
  • [26] Emil J. Straube, Exact regularity of Bergman, Szegő and Sobolev space projections in non pseudoconvex domains, Math. Z. 192 (1986), 117-128. MR 835396 (87k:32045)
  • [27] Matasugu Tsuji, Potential theory in modern function theory, Chelsea, New York, 1975. MR 0414898 (54:2990)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32F20, 35N15

Retrieve articles in all journals with MSC: 32F20, 35N15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0943086-2
Keywords: $ \bar \partial $-Neumann problem, Bergman projection, global regularity
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society