Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Best approximation in metric spaces


Author: Roshdi Khalil
Journal: Proc. Amer. Math. Soc. 103 (1988), 579-586
MSC: Primary 41A65; Secondary 54E35
DOI: https://doi.org/10.1090/S0002-9939-1988-0943087-4
MathSciNet review: 943087
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A metric space $ \left( {X,d} \right)$ is called an $ M$-space if for every $ x$ and $ y$ in $ X$ and for every $ r \in \left[ {0,\lambda } \right]$ we have $ B\left[ {x,r} \right] \cap B\left[ {y,\lambda - r} \right] = \left\{ z \right\}$ for some $ z \in X$, where $ \lambda = d\left( {x,y} \right)$. It is the object of this paper to study $ M$-spaces in terms of proximinality properties of certain sets.


References [Enhancements On Off] (What's this?)

  • [1] G. Ahuja et. al., Best approximation on convex sets in metric linear spaces, Math. Nachr. 78 (1977), 125-130. MR 0481818 (58:1916)
  • [2] G. Albinus, Approximation in metric linear spaces, Approximation Theory, Banach Center Publ., vol. 4, 1979, pp. 7-18. MR 553752 (81a:41051)
  • [3] N. Aronszajn and P. Panitchapakdi, Extension of uniformly continuous transformations and hyper convex metric spaces, Pacific J. Math. 6 (1956), 405-439. MR 0084762 (18:917c)
  • [4] L. M. Blumenthal, Distance geometry, Clarendon Press, Oxford, 1953. MR 0054981 (14:1009a)
  • [5] A. Berard, Characterizations of metric spaces by the use of their midsets intervals, Fund. Math. 73 (1971), 1-7. MR 0295300 (45:4368)
  • [6] H. Busemann, Metric methods in Fmsler spaces and in the foundations of geometry, Ann. of Math. Studies, no. 8, Princeton Univ. Press, Princeton, N.J., 1942. MR 0007251 (4:109e)
  • [7] -, Note on a theorem on convex sets, Mat. Tidsskr. B (1947), 32-34. MR 0023087 (9:302c)
  • [8] S. Izumino, Khalil's theorem and a property of uniformly convex spaces, Math. Rep. Toyama Univ. 6 (1983), 41-46. MR 719144 (84k:46013)
  • [9] R. Khalil, Extreme points of the unit ball of Banach spaces, Math. Rep. Toyama Univ. 4 (1981), 41-45. MR 627961 (82i:46026)
  • [10] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer, New York, 1970. MR 0270044 (42:4937)
  • [11] K. Menger, Untersuchungen über allegemeine Metrik, Math. Ann. 100 (1928), 75-163. MR 1512479

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A65, 54E35

Retrieve articles in all journals with MSC: 41A65, 54E35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0943087-4
Keywords: Midpoint, $ M$-space, convex set
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society