Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Best approximation in metric spaces


Author: Roshdi Khalil
Journal: Proc. Amer. Math. Soc. 103 (1988), 579-586
MSC: Primary 41A65; Secondary 54E35
DOI: https://doi.org/10.1090/S0002-9939-1988-0943087-4
MathSciNet review: 943087
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A metric space $ \left( {X,d} \right)$ is called an $ M$-space if for every $ x$ and $ y$ in $ X$ and for every $ r \in \left[ {0,\lambda } \right]$ we have $ B\left[ {x,r} \right] \cap B\left[ {y,\lambda - r} \right] = \left\{ z \right\}$ for some $ z \in X$, where $ \lambda = d\left( {x,y} \right)$. It is the object of this paper to study $ M$-spaces in terms of proximinality properties of certain sets.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A65, 54E35

Retrieve articles in all journals with MSC: 41A65, 54E35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0943087-4
Keywords: Midpoint, $ M$-space, convex set
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society