Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ k$-to-$ 1$ functions between graphs with finitely many discontinuities


Author: Jo Heath
Journal: Proc. Amer. Math. Soc. 103 (1988), 661-666
MSC: Primary 05C10; Secondary 54C10
DOI: https://doi.org/10.1090/S0002-9939-1988-0943101-6
MathSciNet review: 943101
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper classifies which pairs of graphs $ G$ and $ H$ and which integers $ k \geq 2$ allow $ k$-to-$ 1$ functions from $ G$ onto $ H$ with only finitely many discontinuities.


References [Enhancements On Off] (What's this?)

  • [1] K. Borsuk and R. Molski, On a class of continuous maps, Fund. Math. 45 (1958), 84-98. MR 0102063 (21:858)
  • [2] P. Civin, Two-to-one mappings of manifolds, Duke Math. J. 10 (1943), 49-57. MR 0008697 (5:47e)
  • [3] P. Gilbert, $ n$-to-one mappings of linear graphs, Duke Math. J. 9 (1942), 475-486. MR 0007106 (4:88b)
  • [4] W. H. Gottschalk, On $ k$-to-$ 1$ transformations, Bull. Amer. Math. Soc. 53 (1947), 168-169. MR 0019923 (8:481d)
  • [5] O. G. Harrold, The non-existence of a certain type of continuous transformation, Duke Math. J. 5 (1939), 789-793. MR 0001358 (1:223c)
  • [6] -, Exactly $ (k,1)$ transformations on connected linear graphs, Amer. J. Math. 62 (1940), 823-834. MR 0002554 (2:75c)
  • [7] J. W. Heath, Every exactly $ 2$-to-$ 1$ function on the reals has an infinite number of discontinuities, Proc. Amer. Math. Soc. 98 (1986), 369-373. MR 854049 (87i:54031)
  • [8] -, $ k$-to-$ 1$ functions on arcs for $ k$ even, Proc. Amer. Math. Soc. 101 (1987), 387-391. MR 902560 (89b:26002)
  • [9] -, There is no exactly $ k$-to-$ 1$ function from any continuum onto $ [0,1]$, or any dendrite, with only finitely many discontinuities, Trans. Amer. Math. Soc. 316 (1988), 293-305.
  • [10] H. Katsuura and K. Kellum, $ k$-to-$ 1$ functions on an arc, Proc. Amer. Math. Soc. 101 (1987), 629-633. MR 911022 (88j:54021)
  • [11] H. Katsuura, $ k$-to-$ 1$ functions on (0,1), preprint.
  • [12] R. Levy, How to go around in circles, preprint.
  • [13] V. Martin and J. H. Roberts, Two-to-one transformations on $ 2$-manifolds, Trans. Amer. Math. Soc. 49 (1941), 1-17. MR 0004129 (2:324d)
  • [14] J. Mioduszewski, On two-to-one continuous functions, Dissertationes Math. (Rozprawy Mat.) 24 (1961), 42. MR 0145490 (26:3021)
  • [15] S. B. Nadler, Jr. and L. E. Ward, Jr., Concerning exactly $ (n,1)$ images of continua, Proc. Amer. Math. Soc. 87 (1983), 351-354. MR 681847 (84c:54059)
  • [16] J. H. Roberts, Two-to-one transformations, Duke Math. J. 6 (1940), 256-262. MR 0001923 (1:319d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 05C10, 54C10

Retrieve articles in all journals with MSC: 05C10, 54C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0943101-6
Keywords: $ k$-to-$ 1$ function, $ 2$-to-$ 1$ function, graph
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society