Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Trigonometric approximation and uniform distribution modulo one

Author: Todd Cochrane
Journal: Proc. Amer. Math. Soc. 103 (1988), 695-702
MSC: Primary 11K06; Secondary 11A07
MathSciNet review: 947641
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct $ n$-dimensional versions of the Beurling and Selberg majorizing and minorizing functions and use them to prove results on trigonometric approximation and to prove an $ n$-dimensional version of the Erdös-Turán inequality. Finally, an application is given to counting solutions of polynomial congruences.

References [Enhancements On Off] (What's this?)

  • [1] T. Cochrane, The distribution of solutions to equations over finite fields, Trans. Amer. Math. Soc. 293 (1986), 819-826. MR 816328 (87c:11120)
  • [2] P. Deligne, La conjecture de Weil. I, Publ. Math. Inst. Hautes Études Sci. 43 (1974), 273-307. MR 0340258 (49:5013)
  • [3] Y. Katznelson, An introduction to harmonic analysis, Dover, New York, 1976. MR 0422992 (54:10976)
  • [4] J. F. Koksma, Some theorems on diophantine inequalities, Math. Centrum Amsterdam, Scriptum no. 5, 1950, pp. i+51. MR 0038379 (12:394c)
  • [5] P. Szüsz, Über ein Problem der Gleichverteilung, Comptes Rendus du Premier Congres des Mathematiciens Hongrois, 1950, pp. 461-472. MR 0056036 (15:15c)
  • [6] J. D. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. 12 (1985), 183-216. MR 776471 (86g:42005)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11K06, 11A07

Retrieve articles in all journals with MSC: 11K06, 11A07

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society