NEAR-FIELDS ASSOCIATED WITH INVARIANT LINEAR κ-RELATIONS

PETER FUCHS AND C. J. MAXSON

(Communicated by Donald S. Passman)

ABSTRACT. In this paper we investigate a construction method for subnear-rings of $M(G)$ proposed by H. Wielandt using subgroups of direct powers G^κ of G called invariant linear κ-relations. If $\kappa = 2$ we characterize, in terms of properties of these subgroups, when the associated near-rings are near-fields and prove that every near-field arising from an invariant linear 2-relation must be a field.

I. Introduction. In 1972 H. Wielandt [7] presented a very general method for constructing subnear-rings of the near-ring $M(G)$ of functions on the group G. A particular instance of this construction, namely centralizer near-rings, has been extensively investigated in the past several years. In this paper we initiate a study of the structure of the near-rings obtained by Wielandt's general method.

We recall the construction. Let $(G, +)$ be a group, let κ be a cardinal number and let G^κ denote the direct product of κ copies of G. We let $M(G)$ act on G^κ component-wise. For any subgroup H of G^κ we define

$$M(G, \kappa, H) = \{f \in M(G) \mid f(H) \subseteq H\}.$$

These $M(G, \kappa, H)$ are subnear-rings of $M(G)$ with identity $id: G \rightarrow G$, $id(x) = x \forall x \in G$.

One is therefore led to an investigation of the transfer of information between the structure of the near-rings $M(G, \kappa, H)$ and the subgroups H of G^κ. Wielandt calls these subgroups invariant linear κ-relations and indicates that these linear κ-relations might be studied as in his work on permutation groups P via P-invariant κ-relations [6].

Another reason for investigating the near-rings $M(G, \kappa, H)$ is that they are indeed very general as indicated in the following theorem. Let R be a near-ring with identity, 1. It is well known that R can be embedded in $M(G)$ for some group G.

THEOREM 1.1. Let R be a near-ring with identity 1. Then there exists a group G, a cardinal number κ, and a subgroup H of G^κ such that $R \cong M(G, \kappa, H)$.

The reader is referred to the books by Meldrum [2] and Pilz [3] for the proof of this result as well as background information on near-rings.

In [4], Remak investigated the subgroup structure of G^2 and in [5] indicated how this can be extended to the case $\kappa \geq 3$. We briefly outline his results. Again let G be a group, κ a positive integer, $\kappa \geq 2$, and for $j \in \{1, \ldots, \kappa\}$ let B_j be a...
subgroup of G, \overline{B}_j a normal subgroup of B_j such that $B_j/\overline{B}_j \simeq B_{j+1}/\overline{B}_{j+1}$ with isomorphisms σ_j, $j \in \{1, \ldots, \kappa-1\}$. Let α be an ordinal, $\{b_{1\eta} | \eta < \alpha\}$ a set of coset representatives of \overline{B}_1 in B_1 where $b_{10} = 0$ and define a subset $H \subseteq G^\kappa$ by

$$H = \bigcup_{\eta < \alpha} (b_{1\eta} + \overline{B}_1) \times \prod_{j=1}^{\kappa-1} (\sigma_j \circ \sigma_{j-1} \circ \cdots \circ \sigma_1 (b_{1\eta} + \overline{B}_1)).$$

H is called a κ-fold meromorphic product and will be denoted by

$$H = B_1/\overline{B}_1 \times \cdots \times B_\kappa/\overline{B}_\kappa.$$

It is straightforward to verify that H is a subgroup of G^κ but in general not every subgroup of G^κ is a κ-fold meromorphic product. For $\kappa = 2$, however we have such a result.

Theorem 1.2 (Klein-Fricke) [4]. Every subgroup of $G \times G$ is a 2-fold meromorphic product.

In this paper we focus on near-fields for the case $\kappa = 2$. In the next section we characterize when $M(G, 2, H)$ is a near-field and find the somewhat surprising result that the only near-fields arising in this case are fields.

II. When is $M(G, 2, H)$ a near-field? We now turn to a characterization of the triples $(G, 2, H)$ such that $M(G, 2, H)$ is a near-field. From the Klein-Fricke Theorem we know that $H = B_1/\overline{B}_1 \times \sigma \times B_2/\overline{B}_2$. For $G = \mathbb{Z}_2$ the subgroups $H_1 = \mathbb{Z}_2/\mathbb{Z}_2 \times \{0\}/\{0\} = \mathbb{Z}_2 \times \{0\}$, $H_2 = \{0\} \times \mathbb{Z}_2$ and $H_3 = \{0\} \times \{0\}$ are such that $M(G, 2, H_i) \simeq \mathbb{Z}_2$, $i = 1, 2, 3$. For $H_4 = \{(0,0), (1,1)\}$ and $H_5 = \mathbb{Z}_2 \times \mathbb{Z}_2$ we get $M(G, 2, H_4) = M(G, 2, H_5) = M(\mathbb{Z}_2)$ which is not a near-field. For the remainder of the paper we take $|G| > 2$ and in a sequence of lemmas show that when $M(G, 2, H)$ is a near-field, H has the form $G \times \sigma G$. For a subgroup S of G we let S^* denote $S \setminus \{0\}$.

Lemma II.1. Let $H = B_1/\overline{B}_1 \times \sigma \times B_2/\overline{B}_2$. If $N = M(G, 2, H)$ is a near-field then $B_1 = B_2 = G$.

Proof. We may assume that $B_1 \cup B_2 \neq \{0\}$ since otherwise $M(G, 2, H) = M_0(G)$ is not a near-field. If $B_1 \cup B_2 \neq G$ then the function $f : G \to G$ given by $f(x) = x$ if $x \in G \setminus (B_1 \cup B_2)$ and $f(x) = 0$ if $x \in B_1 \cup B_2$ is in N contradicting the fact that N is a near-field. Hence $B_1 \cup B_2 = G$ so at least one of B_1, B_2 must equal G, say $B_1 = G$. Suppose $B_2 \neq G$ and take $y \in G \setminus B_2$.

Case (i). $\overline{B}_1 \neq \{0\}$. Let $\tilde{b}_1 \in \overline{B}_1^*$. One verifies that the function $h : G \to G$ defined by $h(y) = \tilde{b}_1$ and $h(x) = 0$ for $x \neq y$ is in N. Since $|G| \geq 3$, h is not invertible, a contradiction.

Case (ii). $\overline{B}_1 = \{0\}$. Then $H = G/\{0\} \times \sigma \times B_2/\overline{B}_2$. Define $A_1 = \{x | x \in b_2 + \overline{B}_2\}$, $A_n = \bigcup \{\sigma(x) | x \in A_{n-1}\}$ for $n \geq 2$. Let $A = \bigcup_{n=1}^\infty A_n$. We define $f : G \to G$ by $f(x) = 0$, $x \in A \cup \{y\}$ and $f(x) = x$, $x \notin A \cup \{y\}$ and note that $f \in N$. If $0 \neq y' = y + b_2$, then $y' \notin A \cup \{y\}$ since $A \subseteq B_2$. Hence $f(y') = y'$ so f is not the zero map. Since f is not invertible, we have a contradiction.

Therefore we must conclude that $B_1 = B_2 = G$.

Now let $H = G/B_1 \times \sigma G/B_2$ and let $N = M(G, 2, H)$. When N is a near-field, N is zero-symmetric since N contains the identity map and therefore cannot be
isomorphic to the constant maps on \(\mathbb{Z}_2 \).
Thus in this case we must have \(B_1 \cap B_2 = \{0\} \), for if \(0 \neq y \in B_1 \cap B_2 \) then \(f: G \to G, f(x) = y \forall x \in G \) is an element of \(N_c \setminus \{0\} \), a contradiction. Thus \(B_1 \oplus B_2 \) is a normal subgroup of \(G \). We now develop some notation. Let \(\alpha, \beta \) be ordinals such that \(B_1 = \{b_{1\eta}|\eta < \alpha\}, B_2 = \{b_{2\gamma}|\gamma < \beta\} \)
where \(b_{10} = b_{20} = 0 \). Further, if \(B_1 \neq \{0\} \), let \(\sigma(y_1 + B_1) = b_{1n} + B_2, 1 \leq \eta < \alpha \) and \(\sigma(b_2 + B_1) = x_\gamma + B_2, 1 \leq \gamma < \beta \) if \(B_2 \neq \{0\} \). Define \(X_0 = \varnothing, X_0 = \{x_1 + B_2|1 \leq \gamma < \beta\} \) and for \(n \geq 1 \), \(X_n = \{x + B_1|x + B_1 \cap w + B_2 \neq \varnothing \text{ for some } w + B_2 \in X_{n-1}\}, \) and \(X_n = \{\sigma(x + B_1)|x + B_1 \in X_n\} \). Then define \(X = \bigcup_{n=0}^{\infty}(X_n \cup X_n) \). If \(B_2 = \{0\} \) define \(X = \varnothing \). In a similar manner let \(Y_0 = \varnothing, Y_0 = \{y_1 + B_1|1 \leq \eta < \alpha\}, \) and for \(n \geq 1 \), \(Y_n = \{y + B_2|y + B_2 \cap w + B_1 \neq \varnothing \text{ for some } w + B_1 \in Y_{n-1}\}, \) \(Y_n = \{\sigma^{-1}(y + B_2)|y + B_2 \in Y_n\} \). Let \(Y = \bigcup_{n=0}^{\infty}(Y_n \cup Y_n) \). If \(B_1 = \{0\} \) define \(Y = \varnothing \). For Lemmas II.2-II.5 we always assume that \(B_1 \neq \{0\} \) and \(B_2 \neq \{0\} \).

Lemma II.2. For \(n \geq 0 \) let \(A_n = \bigcup_{\kappa=0}^{n-1} \bigcup Y_\kappa \cap B_1 \) and \(G_\kappa = \bigcup_{\kappa=0}^{n-1} \bigcup X_\kappa \cap B_2 \). Then \(A_n \) and \(G_n \) are subgroups of \(G \) for each \(n \geq 0 \).

Proof. We show that \(A_n \) is a subgroup of \(G \) for \(n \geq 0 \). A similar argument can be used for \(G_n, n \geq 0 \). Since \(B_1 \oplus B_2 = B_2 \oplus B_1 \) is a subgroup of \(G \), so is \(\bigcup Y_0 \cup B_1 \). Suppose we have shown that \(A_m \) is a subgroup for all \(0 < m < n \). Let \(z_1, z_2 \in A_n \).

Case (i). If \(z_1, z_2 \in A_{n-1} \), then \(z_1 - z_2 \in A_{n-1} \subseteq A_n \).

Case (ii). If \(z_1, z_2 \in \bigcup Y_\kappa \) let \(w_1, w_2 \in \bigcup Y_n \) such that \(w_1, w_2 \in \bigcup Y_{n-1} \) with \((z_1, w_1) \in H, (z_2, w_2) \in H \). Thus \((z_1 - z_2, w_1 - w_2) \in H \). If \(w_1 - w_2 = 0 \), then \(z_1 - z_2 \in B_1 \). If \(w_1 - w_2 \in B_1 \), then \(z_1 - z_2 \in \bigcup Y_0 \). Finally, if \(w_1 - w_2 \in \bigcup Y_i \) for some \(i \leq n - 1 \), then \(w_1 - w_2 \in \bigcup Y_{i+1} \), thus \(z_1 - z_2 \in \bigcup Y_{i+1} \subseteq A_n \).

Case (iii). If \(z_1 \in B_1, z_2 \in \bigcup Y_n \), let \(y \in \bigcup Y_n \) such that \(y \in \bigcup Y_{n-1} \) with \((z_2, y) \in H \). Since \((z_1, 0) \in H, (z_1 - z_2, -y) \in H \). Now \(-y \in \bigcup Y_i \) for some \(i \leq n - 1 \), hence \(-y \in \bigcup Y_{i+1} \) and \(z_1 - z_2 \in \bigcup Y_{i+1} \subseteq A_n \).

Case (iv). If \(z_1 \in \bigcup Y_n, z_2 \in \bigcup Y_0, \) let \(w \in \bigcup Y_{n-1} \) and \(b_1 \in B_1 \) such that \((z_1, w) \in H, (z_2, b_1) \in H \). Thus \((z_1 - z_2, w - b_1) \in H \). Since \(w - b_1 \in \bigcup Y_{n-1} \), \(w - b_1 \in \bigcup Y_n \), thus \(z_1 - z_2 \in \bigcup Y_n \subseteq A_n \).

Case (v). Finally let \(z_1 \in \bigcup Y_i \) for some \(n > i > 0 \) and \(z_2 \in \bigcup Y_n \). Let \(w_1 \in \bigcup Y_{i-1}, w_2 \in \bigcup Y_n \) such that \((z_1, w_1) \in H, (z_2, w_2) \in H \). Thus \((z_1 - z_2, w_1 - w_2) \in H \). Since \(w_1 - w_2 \in A_{n-1} \), \(w_1 - w_2 \in \bigcup Y_i \) for some \(i \leq n - 1 \). If \(w_1 - w_2 = 0 \) then \(z_1 - z_2 \in B_1 \subseteq A_n \), if \(w_1 - w_2 \in B_1 \), then \(z_1 - z_2 \in \bigcup Y_0 \subseteq A_n \). If \(w_1 - w_2 \in \bigcup Y_i \), then \(w_1 - w_2 \in \bigcup Y_{i+1} \), so \(z_1 - z_2 \in \bigcup Y_{i+1} \subseteq A_n \).

Lemma II.3. If \(N = M(G,2,H) \) is zero-symmetric then \(Y \cap X = \varnothing \).

Proof. We first show that \(\bigcup Y_0 \cap X = \varnothing \). Suppose \(y \in \bigcup Y_0 \cap B_2 \). Let \(b_1 \in B_1 \) such that \((y, b_1) \in H \). Since \(y \in B_2, (b_1, y) \in H \). Thus \((y + b_1, b_1 + y) = (b_1 + y, b_1 + y) \in H \). Since \(N \) is zero-symmetric \(b_1 + y = 0 \), so \(y = -b_1 \). But \(B_1 \cap B_2 = \{0\} \), hence \(b_1 = 0 \), a contradiction. Consequently \(\bigcup Y_0 \cap B_2 = \varnothing \).

Suppose that \(y \in \bigcup Y_0 \cap \bigcup X_0 \). Let \(b_1 \in B_1, b_2 \in B_2 \) such that \((y, b_1) \in H, (b_2, y) \in H \). Then \((y + b_2, b_1 + y) \in H \) and \((y + b_2, b_1 + y) = (y + b_2, y + b_1) \) for some \(b_1 \in B_1 \). Since \((b_1, b_2) \in H, (y + b_2, b_1 + y) \in H \) and \((y + b_2, b_1 + y) = (y + b_1 + b_2, y + b_1 + b_2) \in H \).
Thus \(y + b_1 + b_2 = 0 \) and \(y + b_1 = -b_2 \). Hence \(y + b_1 \in \bigcup Y_0 \cap B_2 \), a contradiction to our first statement. Therefore \(\bigcup Y_0 \cap G_0 = \emptyset \). Suppose that \(\bigcup Y_0 \cap G_m = \emptyset \) for all \(0 \leq m < n \) and \(y \in \bigcup Y_0 \cap G_n \). Then \(y \in \bigcup X_n \) and there exists \(r_1, \ldots, r_m \in G_{m-1} \) and \(b_2 \in B_2^* \) such that \((r_1, y) \in H, (r_2, r_1) \in H, \ldots, (r_m, r_{m-1}) \in H \) and \((b_2, r_m) \in H \). Therefore \((r_1 + \cdots + r_m + b_2, y + r_1 + \cdots + r_m) \in H \). Since \((y, b_1) \in H \) for some \(b_1 \in B_1^* \), \(y + r_1 + \cdots + r_m + b_2, y + r_1 + \cdots + r_m + b_2 \in H \). Hence \(N \) is zero-symmetric we must have that \(b_1 + y = -b_2 - r_m - \cdots - r_1 \). From the previous Lemma, \(-b_2 - r_m - \cdots - r_1 \in G_{n-1} \) which implies \(b_1 + y \in \bigcup Y_0 \cap G_{n-1} \), a contradiction. Hence \(\bigcup Y_0 \cap G_n = \emptyset, \forall n \geq 0 \). If \(y \in \bigcup Y_0 \cap \bigcup X_n \) for some \(n \geq 1 \), then for some \(b_1 \in B_1, y + b_1 \in \bigcup Y_0 \cap G_{n-1} \) contradicting the previous situation. We have now shown that \(\bigcup Y_0 \cap X = \emptyset \). Suppose that \(\bigcup Y_m \cap X = \emptyset, \forall m \leq n \). Let \(z \in \bigcup Y_n \cap X \). Then for some \(b_1 \in B_1 \) and some \(k \geq 0 \), \(z + b_1 \in \bigcup X_k \) and therefore \(z + b_1 \in \bigcup Y_n \cap \bigcup X_k \). Let \(w \in \bigcup Y_n \) such that \(w \in \bigcup Y_{n-1} \) and \((z + b_1, w) \in H \). Since \(z + b_1 \in \bigcup X_k \), \(z + b_1 \in \bigcup X_{k+1} \). Thus \(w \in \bigcup X_{k+1} \cap \bigcup Y_{n-1} \), a contradiction. Consequently \(\bigcup Y_n \cap X = \emptyset, \forall n \geq 0 \). If \(z \in \bigcup Y_n \cap X \) for some \(n \geq 1 \), then \(z = z_1 + b_2 \) for some \(z_1 \in \bigcup Y_{n-1}, b_2 \in B_2 \) and \(z = z_2 + b_1 \) for some \(z_2 \in \bigcup X_k, b_1 \in B_1 \). Since \(z_1 + b_2 = z_2 + b_1, z_1 - b_1 = z_2 - b_2 \). But \(z_1 - b_1 \in \bigcup Y_{n-1} \) and \(z_2 - b_2 \in \bigcup X_k \), a contradiction to \(\bigcup Y_{n-1} \cap X = \emptyset \). The result now follows.

Lemma II.4. If \(M(G, 2, H) \) is zero-symmetric, then (1) \(Y \cap (B_1 \oplus B_2) = \emptyset \).

(2) \(X \cap (B_1 \oplus B_2) = \emptyset \).

Proof. (1) We first show that \(\bigcup Y_n \cap (B_1 \oplus B_2) = \emptyset, \forall n \geq 0 \). As in the proof of Lemma II.3 we can see that \(\bigcup Y_0 \cap (B_1 \oplus B_2) = \emptyset \). Suppose that \(\bigcup Y_m \cap (B_1 \oplus B_2) = \emptyset, 0 \leq m < n \). If \(y = b_1 + b_2 \) for some \(y \in \bigcup Y_n, b_1 \in B_1, b_2 \in B_2 \) then \(b_2 = y - b_1 \in \bigcup Y_n \cap B_2 \). If \(b_2 \neq 0 \) then \(\bigcup Y_n \cap \bigcup Y_0 \neq \emptyset \), a contradiction while if \(b_2 = 0 \) then \(y = b_1 \in B_1 \) which implies that \(B_2 \in Y_n \) and therefore \(B_2 \cap \bigcup Y_{n-1} \neq \emptyset \), a contradiction to our assumption. Thus \(\bigcup Y_n \cap (B_1 \oplus B_2) = \emptyset, \forall n \geq 0 \). If \(b_1 + b_2 \in \bigcup Y_n \) for some \(n \geq 1 \), then for some \(b_2 \in B_2, b_1 + b_2 \in \bigcup Y_{n-1} \), a contradiction. This establishes (1). The second statement can be shown in a similar way.

Lemma II.5. If \(M(G, 2, H) \) is zero-symmetric, then

(1) \(\bigcup Y_n \cap \bigcup_{k=0}^n Y_k = \emptyset, \forall n \geq 0 \),

(2) \(\bigcup X_n \cap \bigcup_{k=0}^n X_k = \emptyset, \forall n \geq 0 \).

Proof. (1) Let \(n \) be minimal so that \(\bigcup Y_n \cap \bigcup_{k=0}^n Y_k \neq \emptyset \). Obviously \(n \geq 1 \). Then \(\bigcup Y_m \cap \bigcup_{k=0}^m Y_k = \emptyset \) for all \(0 \leq m < n \). Let \(y \in \bigcup Y_n \cap \bigcup_{k=0}^n Y_k \), say \(y \in \bigcup Y_j \) for some \(1 \leq j \leq n \). Suppose that \(y \in \bigcup Y_{j-1} \). Let \(x \in \bigcup Y_n \) such that \(x \in \bigcup Y_{n-1} \) and \((y, x) \in H \). If \(j - 1 \neq 0 \) then \(x \in \bigcup Y_{n-1} \cap \bigcup Y_{j-1} \), a contradiction. If \(j = 1 \), then \(x \in B_1 \oplus B_2 \cap \bigcup Y_{n-1} \) which contradicts Lemma II.4. Consequently \(y \notin \bigcup Y_{j-1} \), so \(y + b_2 \in \bigcup Y_{j-1} \) for some \(0 \neq b_2 \in B_2 \). But then \(-(y + b_2) + y = -b_2 - y + y = -b_2 \in A_n \). By Lemma II.4 \(-b_2 \in B_1^* \), a contradiction since \(B_1 \oplus B_2 = \{0\} \). The other statement follows similarly.

The finite case now follows from the above lemmas.
THEOREM II.6. Let G be a finite group, $|G| \geq 3$ and $H = G/B_1 \times \sigma G/B_2$. If $M(G, 2, H)$ is zero-symmetric, then $B_1 = \{0\} = B_2$.

PROOF. Suppose that $B_1 \neq \{0\}$. Then $B_2 \neq \{0\}$ and since G is finite there exists a positive integer n such that $\bigcup Y_n \cap \bigcup \kappa = \bigcup Y_\kappa \neq \emptyset$. The result now follows from Lemma II.5.

From Theorem II.6 we note that when G is a finite group and $H = G/B_1 \times \sigma G/B_2$ with $B_1 \neq \{0\}$ and $B_2 \neq \{0\}$ then there exists $x \in G^*$ such that $(x, x) \in H$. This implies that every group H of this form contains a nontrivial subgroup of the diagonal $\{(x, x)|x \in G\}$. Therefore the associated near-ring $M(G, 2, H)$ cannot be zero-symmetric. We now present an example to show that this is not the case when G is infinite.

EXAMPLE II.7. Let $\{0\} \neq A$ be a group with identity 0, $G = \bigoplus_{z \in \mathbb{Z}} A = \{(x_z)_{z \in \mathbb{Z}} \in A^\mathbb{Z}|x_z = 0 \text{ for all but finitely many } z \in \mathbb{Z}\}$. Further let $B_1 = \{(x_z)_{z \in \mathbb{Z}} \in G|z_0 = 0, \forall z \neq 0\}$ and $B_2 = \{(x_z)_{z \in \mathbb{Z}} \in G|z_0 = 0, \forall z \neq 1\}$. Define $\phi: G/B_1 \to G/B_2$ by $\phi((x_z)_{z \in \mathbb{Z}} + B_1) = (y_z)_{z \in \mathbb{Z}} + B_2$ where $y_z = x_{-1} z \forall z \in \mathbb{Z}$. It is straightforward to verify that ϕ is an isomorphism, so ϕ determines a 2-fold meromorphic product $H = G/B_1 \times \sigma G/B_2$ with $B_1 \neq \{0\}$ and $B_2 \neq \{0\}$. One can check that $(x_z)_{z \in \mathbb{Z}} + B_1 \cap \phi((x_z)_{z \in \mathbb{Z}} + B_1) = \emptyset$ for all $(x_z)_{z \in \mathbb{Z}} \in G \setminus B_1$.

Since $B_1 \cap B_2 = \{0\}$ it follows that there is no $x \in G^*$ such that $(x, x) \in H$. Thus $M(G, 2, H)$ is zero-symmetric.

We are now ready to establish our major result.

THEOREM II.8. Let G be an arbitrary group, $|G| \geq 3$ and $H = G/B_1 \times \sigma G/B_2$. If $N = M(G, 2, H)$ is a near-field, then $B_1 = \{0\} = B_2$.

PROOF. Case (A): We first suppose that $B_1 \neq \{0\}$ and $B_2 \neq \{0\}$. We may also assume that there is no $0 \neq x \in G$ with $(x, x) \in H$. We define a function $f: G \to G$ as follows.

(i) Let $f(0) = 0$, $f(b_1^{(1)}) = b_{11}$ for all $1 \leq \eta < \alpha$, $f(b_2^{(1)}) = b_{21}$ for all $1 \leq \gamma < \beta$ and if $b_1^{(1)} + b_2^{(1)} \in B_1 \cup B_2$, $1 \leq \eta < \alpha$, $1 \leq \gamma < \beta$ let $f(b_1^{(1)} + b_2^{(1)}) = b_{11} + b_{21}$.

(ii) If $b_2 \in B_2$ define $f(x_1 + b_2) = x_1$. For $2 \leq \gamma < \beta$ let $f(x_\gamma) = x_1$ and $f(x_1 + b_2) = x_1 + b_{11}$ if $b_2 \in B_2^*$. Thus f is defined on $\bigcup X_0$.

Suppose we have defined f on $\bigcup X_m$ and $\bigcup X_m$ for each $0 \leq m < n$.

(iii) For $x \in \bigcup X_{n-1}$ and $b_1 \in B_1^*$ let $f(x + b_1) = b_{11} + f(x)$. This defines f on $\bigcup X_n$.

(iv) In order to define f on $\bigcup X_n$ we choose an arbitrary but fixed set of coset representatives $\{w_\xi|\xi < \delta_n\}$ of X_n such that for each $z_\xi + B_1 \in X_n$, $\sigma(z_\xi + B_1) = w_\xi + B_2$. If $\sigma(f(z_\xi) + B_1) = w_\xi + B_2$ we define $f(w_\xi + b_2) = w_\xi + b_{11}$ if $b_2 \in B_2^*$ and $f(w_\xi) = w_\xi$.

In a similar manner we now define f on Y.

(v) If $b_1 \in B_1$ let $f(y_1 + b_1) = y_1$. If $2 \leq \eta < \alpha$ let $f(y_\eta) = y_1$ and $f(y_\eta + b_1) = y_1 + b_{11}$ for $b_1 \in B_1^*$.

Suppose f has been defined on $\bigcup Y_m$ and $\bigcup Y_m$ for all $0 \leq m < n$.

(vi) For all $y \in \bigcup Y_{n-1}$ and $b_2 \in B_2^*$ let $f(y + b_2) = f(y) + b_{21}$.

(vii) Choose an arbitrary but fixed set of coset representatives $\{w_\xi|\xi < \delta_n\}$ of Y_n such that for $z_\xi + B_2 \in \bigcup Y_n$, $\sigma^{-1}(z_\xi + B_2) = w_\xi + B_1$. If $\sigma^{-1}(f(z_\xi) + B_2) = w_\xi + B_1$ define $f(w_\xi) = w_\xi$ and $f(w_\xi + b_1) = w_\xi + b_{11}$ for $b_1 \in B_1^*$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
We have now defined f on $X \cup Y \cup B_1 \oplus B_2$.

(viii) Let $S = \{y + x | y \in \bigcup \bar{Y}_n \text{ for some } n \geq 0, x \in \bigcup \bar{X}_m \text{ for some } m \geq 0\}$. For $y + x \in S$ let $f(y + x) = f(y) + f(x)$.

(ix) Finally define $f(z) = z$ if $z \notin X \cup Y \cup S \cup B_1 \oplus B_2$.

We now show that $f \in N$.

1: f is well defined.

(i) Since $B_1 \cap B_2 = \{0\}$, f is well defined on $B_1 \oplus B_2$.

(ii) Let $n \geq 1$. We need to show that f is well defined on $\bigcup X_n$.

Let $\{\omega_\xi | \xi < \delta\}$ be a set of representatives for the cosets in $\bigcup X_{\xi-1}$ and let $y \in \bigcup X_n$. Then y has the form $y = x + b_1$ for some $x \in \bigcup \bar{X}_{\xi-1}, b_1 \in B_1$. Suppose $y = w_\xi + b_2 + b_1 = w_\xi' + b_2' + b_1'$, where $b_1, b_1' \in B_1, b_2, b_2' \in B_2, \xi \neq \xi'$. Then $-b_2' - w_\xi' + w_\xi + b_2 = b_1' - b_1 \in G_{\xi-1} \cap B_1$. By Lemma II.4 and since $B_1 \cap B_2 = \{0\}$ this can only happen if $-b_2' - w_\xi' + w_\xi + b_2 = 0$. But then $w_\xi + b_2 = w_\xi' + b_2'$, a contradiction. By Lemma II.5, f is well defined on X.

(iii) Similar arguments show that f is well defined on Y.

(iv) We show that f is well defined on S. Suppose that $y_1 + x_1 = y_2 + x_2$, $y_1 \in \bigcup \bar{Y}_j, y_2 \in \bigcup \bar{Y}_i, x_1 \in \bigcup \bar{X}_m, x_2 \in \bigcup \bar{X}_n$. Then $-y_2 + y_1 = x_2 - x_1 \in Y \cup B_1 \cap X \cup B_2$ by Lemma II.2. According to Lemmas II.3 and II.4 this implies $y_1 = y_2$ and $x_1 = x_2$.

It is easy to show from Lemmas II.3 and II.4 that $S \cap X = \emptyset$, $S \cap Y = \emptyset$ and that $S \cap B_1 \oplus B_2 = \emptyset$. Suppose, for example, $y + x \in \bigcup X_\kappa \cap S$ for some $\kappa \geq 1$. Then $y + x = x' + b_1$ for some $x' \in \bigcup \bar{X}_{\kappa-1}, b_1 \in B_1$. Then $y + x - b_1 = x'$, so $y + b_1' = x' - x \in Y \cap (X \cup B_2)$ for some $b_1' \in B_1$. This contradicts Lemmas II.3 and II.4.

Lemmas II.3 and II.4 now show that f is well defined on G.

2: $f \in N$. Let $(x, y) \in H$. We must show that $(f((x, y)) = (f(x), f(y)) \in H$.

Case (i) If $x \in B_1$, then $y \in B_2$, so $(f(x), f(y)) \in H$.

Case (ii) If $x = x_\gamma + b_1$, $1 \leq \gamma < \beta$, $b_1 \in B_1$, then $y = x_\gamma + b_2$ for some $b_2 \in B_2$.

Now $f(x) = b_2$; or $f(x) = b_2 + v_1$, and $f(y) = x_1$ or $f(y) = x_1 + b_2$. In any case $(f(x), f(y)) \in H$.

Case (iii) Let $x \in X$. If $x \in \bigcup X_\kappa$ for some $\kappa \geq 1$, then $y \in \bigcup \bar{X}_\kappa$. We have that $x \in x' + B_1$ for some $x' \in \bigcup \bar{X}_{\kappa-1}$. By construction of f, $f(x) \in f(x') + B_1$ and $f(y) \in \sigma(f(x') + B_1)$. Thus $(f(x), f(y)) \in H$. If $x \in \bigcup \bar{X}_\kappa$ for some $\kappa \geq 0$, then $x \in \bigcup X_{\kappa+1}$ and we are back to the previous case.

Case (iv) Let $x \in Y$. If $x = x_\eta + b_1 \in \bigcup \bar{Y}_0$, then $y = b_1 + x_\eta + b_2, 1 \leq \eta < \alpha$ for some $b_2 \in B_2$. Now $f(x) = y_1$ or $f(x) = y_1 + b_11$ and $f(y) = b_1 + f(y) = b_1 + b_21$. In any case $(f(x), f(y)) \in H$. Let $x \in \bigcup \bar{Y}_n$ for some $n \geq 1$. Then $y \in \bigcup Y_n$ and with arguments similar to those in case (iii), we can show that $(f(x), f(y)) \in H$.

Let $x \in \bigcup Y_1$. If $x \in \bigcup \bar{Y}_0$ we have just seen that $(f(x), f(y)) \in H$. Hence we may assume that $x = x' + b_21$ for some $x' \in \bigcup \bar{Y}_0, 1 \leq \gamma < \beta$. Let $1 \leq \eta < \alpha$ so that $(x', b_1) \in H$. Hence $y = b_1 + x_\eta + b_2$ for some $b_2 \in B_2$. Now $f(x) = f(x' + b_21) = f(x') + b_21$ and $f(x') + b_21 = y_1 + b_11 + b_21$ or $f(x') + b_21 = y_1 + b_21$. Further $f(y) = y_1 + x_\eta + b_2 + b_1 + f(x_\eta + b_2)$ and $b_11 + f(x_\eta + b_2) = b_11 + x_1 + b_21$. In any case $(f(x), f(y)) \in H$.

Finally if $x \in \bigcup Y_n$ for some $n \geq 2$, then $x = x' + b_2$ for some $x' \in \bigcup \bar{Y}_{n-1}$, $b_2 \in B_2$. We may assume that $b_2 = b_21 \in B_2$. Let $y' \in \bigcup Y_{n-1}$ such that $y' \in \bigcup \bar{Y}_{n-2}$ with $(x', y') \in H$. Then $(x' + b_2, y' + x_\eta) \in H$, thus $y = y' + x_\eta + b_2$.
for some \(b_2 \in B_2 \). Since \(y \in S \), \((f(x), f(y)) = (f(x') + b_2, f(y') + f(x_1 + b_2))\) is either equal to \((f(x') + b_2, f(y') + f(x_1 + b_2))\) or equal to \((f(x') + b_1, f(y') + f(x_1))\). Since \((f(x'), f(y')) \in H\) as shown previously and \((b_2, x_1) \in H\) we have \((f(x), f(y)) \in H\).

Case (v) Let \(x \in S \), say \(x = y^* + x^* \), \(y^* \in \bigcup \mathbb{Y}_n \), \(x^* \in \bigcup \mathbb{X}_m \). Suppose that \(n \geq 1 \). Let \(y \in \bigcup \mathbb{Y}_n \) such that \(y \in \bigcup \mathbb{Y}_{n-1} \) with \((y^*, y) \in H\) and \(x \in \bigcup \mathbb{X}_{m+1} \) such that \((x^*, x) \in H\). Then \((y^* + x^*, y + x) \in H\). Thus \(y = y^* + x^* + b_2 \) for some \(b_2 \in B_2 \) and \((f(x), f(y)) = (f(x') + f(x^*), f(y') + f(x + b_2)) \in H\) according to Cases (iii) and (iv). If \(n = 0 \), \(y^* \in \bigcup \mathbb{Y}_0 \). Let \(b_1 \in \mathbb{B}_1^* \) with \((y^*, b_1) \in H\). Then \((y^* + x^*, b_1 + x) \in H\). Thus \(y = b_1 + b_2 + x^* \) for some \(b_2 \in B_2 \). Hence \((f(x), f(y)) = (f(x') + f(x^*), b_1 + f(x + b_2)) \in H\), since \((f(x'), f(x + b_2)) \in H\).

Case (vi) Let \(x \in G \setminus (\bigcup \mathbb{Y} \cup S \cup B_1 \cup B_2) \). Then clearly \(y \notin B_1 \cup B_2 \), \(y \notin \bigcup \mathbb{X}_k \) for any \(k \geq 0 \), \(y \notin Y \). Suppose \(y \in \bigcup \mathbb{X}_k \) for some \(k \geq 1 \). If \(k = 1 \), then \(y = b_1 + b_2 \) for some \(b_2 \in \bigcup \mathbb{Y}_0 \). Since \(y \notin \bigcup \mathbb{X}_0 \), \(b_1 = b_1 \). Now \((b_2, y) \in H\) for some \(b_2 \in B_2^* \). Hence \((y + x^*, b_1 + b_2) \in H\). Thus \(x = y + x + b_1 \) for some \(b_1 \in B_1 \). Hence \(x \in \bigcup \mathbb{Y}_1 \), a contradiction. If \(\alpha = 2 \), \(y = b_1 + b_2 \) for some \(b_2 \in B_2 \) and \((x^*, x) \in H\). Thus \(x = y + x + b_2 \) for some \(b_2 \in B_2 \). Hence \((x^*, x) \in H\). Finally let \(y \in S \). Then \(y = y + x^* \) for some \(y \in \bigcup \mathbb{Y}_n \), \(x \in \bigcup \mathbb{X}_m \). Suppose that \(m \geq 1 \). Let \(x^* \in \bigcup \mathbb{Y}_m \) such that \(x^* \in \bigcup \mathbb{Y}_{m-1} \) with \((x^*, x) \in H\). Since \(y_1 \in \bigcup \mathbb{Y}_n \), \(y_1 \in \bigcup \mathbb{Y}_{n+1} \). Choose \(z \in \bigcup \mathbb{Y}_{n+1} \) with \((z, y_1) \in H\). Then \((z + x^*_1, y_1 + x) \in H\). Thus \(z = z + x + x + b_1 \) for some \(b_1 \in B_1 \). Hence \(x = x + b_1 + x^*_1 \) for some \(b^*_1 \in B_1^* \). But then \(x \in S \), a contradiction. If \(m = 0 \) choose \(b_1 \in B_2^* \) with \((b^*_1 + x, y) \in H\). Then \((z + b_1 + y_1 + x_1) \in H\). Thus \(x = x + b_1 + b_1 + y = x + b_1 + b_1 \) for some \(b_1 \in B_1 \). Since \(z + b_2 \in \bigcup \mathbb{Y}_{n+1} \), \(z \in \bigcup \mathbb{Y}_{n+2} \), a contradiction. Therefore we must conclude that \(y \in G \setminus (X \cup Y \cup S \cup B_1 \cup B_2) \). Consequently \((f(x), f(y)) = (x, y) \in H\).

It now follows that \(f \in N \). Clearly \(f \) is not invertible, since \(B_2 \neq \{0\} \) by assumption and \(f(x_1 + b_2) = x, \forall b_2 \in B_2 \).

Case (B). Suppose that either \(B_1 = \{0\} \) or \(B_2 = \{0\} \). W.l.o.g. we may assume that \(B_1 = \{0\} \). Then \(X = \emptyset, S = \emptyset, B_1 \cup B_2 = B_1 \). Define the function \(f : G \to G \) on \(Y \cup B_1 \) in the same way as before, noting that \(U \cup Y_n = \bigcup \mathbb{Y}_{n-1} \) for all \(n \geq 1 \). For \(z \notin Y \cup B_1 \) let \(f(z) = z \). As in Case (A) one can verify that \(f \) is well defined, \(f \in N \) but \(f \) is not invertible since \(f(y_1 + b_1) = y_1 \) for all \(b_1 \in B_1 \).

In both cases we obtain a noninvertible function \(f \in M(G, 2, H) \), a contradiction to \(N \) being a near-field. Thus \(B_1 = \{0\} = B_2 \).

We now show that the only near-fields arising in the case \(\kappa = 2 \) are fields. From the discussion prior to Lemma II.1 we see this is the case for \(|G| = 2 \). We now turn to \(|G| > 2 \). If \(A \) is a group of automorphisms of \(G \), then \(A^0 \) denotes the group with the zero map adjoined.

Theorem II.9. Let \(|G| \geq 3 \). If \(N = M(G, 2, H) \) is a near-field then \(N \) is a field. In fact, \(N = M_{A^0}(G) \) where \(A = \langle \alpha \rangle \) is a cyclic group of automorphisms of \(G \) such that \(G = A_2 \cup \{0\} \) for \(x \in G^* \). Conversely, if \(B = \langle \beta \rangle \) is a cyclic group of automorphisms of \(G \) such that \(G = B_2 \cup \{0\} \) for \(x \in G^* \), then \(M_{B^0}(G) \) is a near-field and \(M_{B^0}(G) = M(G, 2, H) \) where \(H = G \times \beta G \).

Proof. From Lemma II.1 and Theorem II.8, \(H = G \times A = \{ (x, \alpha(x)) | x \in G \} \). But then \(f \in N \) if and only if \(\alpha f(x) = f(\alpha x) \) for all \(x \in G \), i.e., if and only if \(f \) belongs to the centralizer near-ring \(M_{(\alpha)^0}(G) \). Since \(N \) is a near-field it is well
known (see [1]) that G^* must be the only nonzero orbit for $A = \langle \alpha \rangle$. Finally since A is abelian, $M_{A^*}(G)$ is a field. For the converse it is clear that $M_{B^*}(G) = M(G, 2, H)$ with $H = G \times \beta G$ and again from [1] we see that $M(G, 2, H)$ is a near-field since (β, G) satisfies the needed finiteness condition.

COROLLARY II.10. If F is a finite field then $F \simeq M(G, 2, H)$ for some group G and some 2-fold meromorphic product H.

Proof. We know $F \simeq M_F(F)$ and $F^* = \langle \alpha \rangle$. By the above theorem, $F \simeq M(F, 2, F \times \alpha F)$.

COROLLARY II.11. Let $|G| > 3$. H is an invariant linear 2-relation of the form $G \times G$ with $\langle \sigma \rangle$ transitive on G^* if and only if $M(G, 2, H)$ is a field.

We conclude the paper with an example to show that the situation is quite different for $\kappa = 3$. Indeed, we see that one can have a meromorphic product $H = G/B_1 \times \sigma_1 G/B_2 \times \sigma_2 G/B_3$ such that $N = M(G, 3, H)$ is a near-field but $B_1 \neq \{0\}$, $B_2 \neq \{0\}$ and $B_3 \neq \{0\}$.

EXAMPLE II.12. Let $G = \mathbb{Z}_2^4$ with the usual basis $\{e_1, e_2, e_3, e_4\}$ and let $B_1 = B_2 = B_3 = G$. Let $\overline{B}_1 = \langle e_1 + e_2, e_3 + e_4 \rangle$, $\overline{B}_2 = \langle e_1, e_1 + e_3 + e_4 \rangle$ and $\overline{B}_3 = \langle e_1, e_1 + e_2 + e_3 \rangle$. The following scheme determines a meromorphic product H:

$\overline{B}_1 \mapsto \overline{B}_2 \mapsto \overline{B}_3,$

$e_1 + \overline{B}_1 \mapsto e_4 + \overline{B}_2 \mapsto e_1 + e_2 + e_4 + \overline{B}_3,$

$e_1 + e_4 + \overline{B}_1 \mapsto e_1 + e_2 + \overline{B}_2 \mapsto e_1 + e_4 + \overline{B}_3,$

$e_4 + \overline{B}_1 \mapsto e_2 + e_3 + \overline{B}_2 \mapsto e_2 + \overline{B}_3.$

One can check that $M(G, 3, H) = \{0, \text{id}\}$.

REFERENCES

6. H. Wielandt, *Permutation groups through invariant relations and invariant functions*, Lecture Notes, Ohio State University, Columbus, 1969.

DEPARTMENT OF MATHEMATICS, TEXAS A & M UNIVERSITY, COLLEGE STATION, TEXAS 77843 (Current address of C. J. Maxson)

Current address (Peter Fuchs): Department of Mathematics, Johannes Kepler Universität, A-4040 Linz, Austria