NEAR-FIELDS ASSOCIATED WITH INVARIANT LINEAR κ-RELATIONS
PETER FUCHS AND C. J. MAXSON
(Communicated by Donald S. Passman)

ABSTRACT. In this paper we investigate a construction method for subnear-rings of $M(G)$ proposed by H. Wielandt using subgroups of direct powers G^κ of G called invariant linear κ-relations. If $\kappa = 2$ we characterize, in terms of properties of these subgroups, when the associated near-rings are near-fields and prove that every near-field arising from an invariant linear 2-relation must be a field.

I. Introduction. In 1972 H. Wielandt [7] presented a very general method for constructing subnear-rings of the near-ring $M(G)$ of functions on the group G. A particular instance of this construction, namely centralizer near-rings, has been extensively investigated in the past several years. In this paper we initiate a study of the structure of the near-rings obtained by Wielandt's general method.

We recall the construction. Let $(G, +)$ be a group, let κ be a cardinal number and let G^κ denote the direct product of κ copies of G. We let $M(G)$ act on G^κ component-wise. For any subgroup H of G^κ we define

$$M(G, \kappa, H) = \{ f \in M(G) | f(H) \subseteq H \}.$$

These $M(G, \kappa, H)$ are subnear-rings of $M(G)$ with identity $id: G \to G$, $id(x) = x \forall x \in G$.

One is therefore led to an investigation of the transfer of information between the structure of the near-rings $M(G, \kappa, H)$ and the subgroups H of G^κ. Wielandt calls these subgroups invariant linear κ-relations and indicates that these linear κ-relations might be studied as in his work on permutation groups P via P-invariant κ-relations [6].

Another reason for investigating the near-rings $M(G, \kappa, H)$ is that they are indeed very general as indicated in the following theorem. Let R be a near-ring with identity, 1. It is well known that R can be embedded in $M(G)$ for some group G.

Theorem I.1. Let R be a near-ring with identity 1. Then there exists a group G, a cardinal number κ, and a subgroup H of G^κ such that $R \simeq M(G, \kappa, H)$.

The reader is referred to the books by Meldrum [2] and Pilz [3] for the proof of this result as well as background information on near-rings.

In [4], Remak investigated the subgroup structure of G^2 and in [5] indicated how this can be extended to the case $\kappa \geq 3$. We briefly outline his results. Again let G be a group, κ a positive integer, $\kappa \geq 2$, and for $j \in \{1, \ldots, \kappa\}$ let B_j be a
subgroup of \(G \), \(\overline{B}_j \) a normal subgroup of \(B_j \) such that \(B_j / \overline{B}_j \simeq B_{j+1} / \overline{B}_{j+1} \) with isomorphisms \(\sigma_j, j \in \{1, \ldots, \kappa-1\} \). Let \(\alpha \) be an ordinal, \(\{b_{1\eta} | \eta < \alpha\} \) a set of coset representatives of \(\overline{B}_1 \) in \(B_1 \) where \(b_{10} = 0 \) and define a subset \(H \subseteq G^\kappa \) by

\[
H = \bigcup_{\eta < \alpha} \left((b_{1\eta} + \overline{B}_1) \times \prod_{j=1}^{\kappa-1} (\sigma_j \circ \sigma_{j-1} \circ \cdots \circ \sigma_1 (b_{1\eta} + \overline{B}_1)) \right).
\]

\(H \) is called a \(\kappa \)-fold meromorphic product and will be denoted by

\[
H = B_1 / \overline{B}_1 \times \sigma_1 B_2 / \overline{B}_2 \times \cdots \times \sigma_{\kappa-1} B_\kappa / \overline{B}_\kappa.
\]

It is straightforward to verify that \(H \) is a subgroup of \(G^\kappa \) but in general not every subgroup of \(G^\kappa \) is a \(\kappa \)-fold meromorphic product. For \(\kappa = 2 \), however we have such a result.

Theorem 1.2 (Klein-Fricke) [4]. Every subgroup of \(G \times G \) is a 2-fold meromorphic product.

In this paper we focus on near-fields for the case \(\kappa = 2 \). In the next section we characterize when \(M(G, 2, H) \) is a near-field and find the somewhat surprising result that the only near-fields arising in this case are fields.

II. When is \(M(G, 2, H) \) a near-field? We now turn to a characterization of the triples \((G, 2, H) \) such that \(M(G, 2, H) \) is a near-field. From the Klein-Fricke Theorem we know that \(H = B_1 / \overline{B}_1 \times \sigma_1 B_2 / \overline{B}_2 \). For \(G = \mathbb{Z}_2 \) the subgroups \(H_1 = \mathbb{Z}_2 / \mathbb{Z}_2 \times \{0\} / \{0\} = \mathbb{Z}_2 \times \{0\} \), \(H_2 = \{0\} \times \mathbb{Z}_2 \) and \(H_3 = \{0\} \times \{0\} \) are such that \(M(G, 2, H_i) \simeq \mathbb{Z}_2 \), \(i = 1, 2, 3 \). For \(H_4 = \{(0,0),(1,1)\} \) and \(H_5 = \mathbb{Z}_2 \times \mathbb{Z}_2 \) we get \(M(G, 2, H_4) = M(G, 2, H_5) = M(\mathbb{Z}_2) \) which is not a near-field. For the remainder of the paper we take \(|G| > 2 \) and in a sequence of lemmas show that when \(M(G, 2, H) \) is a near-field, \(H \) has the form \(G \times \sigma G \). For a subgroup \(S \) of \(G \) we let \(S^* \) denote \(S \setminus \{0\} \).

Lemma II.1. Let \(H = B_1 / \overline{B}_1 \times \sigma_1 B_2 / \overline{B}_2 \). If \(N = M(G, 2, H) \) is a near-field then \(B_1 = B_2 = G \).

Proof. We may assume that \(B_1 \cup B_2 \neq \{0\} \) since otherwise \(M(G, 2, H) = M_0(G) \) is not a near-field. If \(B_1 \cup B_2 \neq G \) then the function \(f : G \to G \) given by \(f(x) = x \) if \(x \in G \setminus (B_1 \cup B_2) \) and \(f(x) = 0 \) if \(x \in B_1 \cup B_2 \) is in \(N \) contradicting the fact that \(N \) is a near-field. Hence \(B_1 \cup B_2 = G \) so at least one of \(B_1, B_2 \) must equal \(G \), say \(B_1 = G \). Suppose \(B_2 \neq G \) and take \(y \in G \setminus B_2 \).

Case (i). \(\overline{B}_1 \neq \{0\} \). Let \(\tilde{b}_1 \in \overline{B}_1^* \). One verifies that the function \(h : G \to G \) defined by \(h(y) = \tilde{b}_1 \) and \(h(x) = 0 \) for \(x \neq y \) is in \(N \). Since \(|G| \geq 3 \), \(h \) is not invertible, a contradiction.

Case (ii). \(\overline{B}_1 = \{0\} \). Then \(H = G / \{0\} \times \sigma B_2 / \overline{B}_2 \). Now \(\sigma(y) = b_2 + \overline{B}_2 \) for some \(b_2 \in B_2 \setminus \overline{B}_2 \). Define \(A_1 = \{x | x \in b_2 + \overline{B}_2 \} \), \(A_n = \bigcup \{\sigma(x) | x \in A_{n-1}\} \) for \(n \geq 2 \). Let \(A = \bigcup_{n=1}^\infty A_n \). We define \(f : G \to G \) by \(f(x) = 0 \), \(x \in A \cup \{y\} \) and \(f(x) = x \), \(x \notin A \cup \{y\} \) and note that \(f \in N \). If \(0 \neq y' = y + b_2 \), then \(y' \notin A \cup \{y\} \) since \(A \subseteq B_2 \). Hence \(f(y') = y' \) so \(f \) is not the zero map. Since \(f \) is not invertible, we have a contradiction.

Therefore we must conclude that \(B_1 = B_2 = G \).

Now let \(H = G / B_1 \times \sigma G / B_2 \) and let \(N = M(G, 2, H) \). When \(N \) is a near-field, \(N \) is zero-symmetric since \(N \) contains the identity map and therefore cannot be
isomorphic to the constant maps on \(\mathbb{Z}_2 \). Thus in this case we must have \(B_1 \cap B_2 = \{0\} \), for if \(0 \neq y \in B_1 \cap B_2 \) then \(f: G \to G, f(x) = y \forall x \in G \) is an element of \(N_c \setminus \{0\} \), a contradiction. Thus \(B_1 \oplus B_2 \) is a normal subgroup of \(G \). We now develop some notation. Let \(\alpha, \beta \) be ordinals such that \(B_1 = \{b_{1\eta} | \eta < \alpha\} \), \(B_2 = \{b_{2\gamma} | \gamma < \beta\} \) where \(b_{10} = b_{20} = 0 \). Further, if \(B_1 \neq \{0\} \), let \(\sigma(y + B_1) = b_{1n} + B_2, 1 \leq n < \alpha \) and \(\sigma(b_{21} + B_1) = x_\gamma + B_2, 1 \leq \gamma < \beta \) if \(B_2 \neq \{0\} \). Define \(X_0 = \emptyset, X_0 = \{x_\alpha + B_2 | 1 \leq \gamma \leq \beta \} \) and for \(n \geq 1 \), \(X_n = \{x+B_1|x+B_1 \cap n+B_2 \neq \emptyset \) for some \(w+B_2 \in X_{n-1}\}, \) and \(\overline{X}_n = \{\sigma(x + B_1)|x + B_1 \in X_n\}. \) Then define \(X = \bigcup_{n=0}^{\infty}(X_n \cup \overline{X}_n) \). If \(B_2 = \{0\} \) define \(X = \emptyset \). In a similar manner let \(Y_0 = \emptyset, Y_0 = \{y_{\eta} + B_1 | 1 \leq \eta < \alpha\} \), and for \(n \geq 1 \), \(Y_n = \{y + B_2 | y + B_2 \cap w + B_1 \neq \emptyset \) for some \(w + B_1 \in Y_{n-1}\}, \) \(\overline{Y}_n = \{\sigma^{-1}(y + B_2)|y + B_2 \in Y_n\}. \) Let \(Y = \bigcup_{n=0}^{\infty}(Y_n \cup \overline{Y}_n) \). If \(B_1 = \{0\} \) define \(Y = \emptyset \). For Lemmas II.2–II.5 we always assume that \(B_1 \neq \{0\} \) and \(B_2 \neq \{0\} \). If either \(B_1 = \{0\} \) or \(B_2 = \{0\} \) then the results are trivial or can be seen to hold by making obvious modifications.

Lemma II.2. For \(n \geq 0 \) let \(A_n = \bigcup_{k=0}^{n} \bigcup Y_\kappa \cup B_1 \) and \(G_n = \bigcup_{k=0}^{n} \bigcup \overline{X}_\kappa \cup B_2. \) Then \(A_n \) and \(G_n \) are subgroups of \(G \) for each \(n \geq 0 \).

Proof. We show that \(A_n \) is a subgroup of \(G \) for \(n \geq 0 \). A similar argument can be used for \(G_n, n \geq 0 \). Since \(B_1 \oplus B_2 = B_2 \oplus B_1 \) is a subgroup of \(G \), so is \(\bigcup Y_0 \cup B_1 \). Suppose we have shown that \(A_m \) is a subgroup for all \(0 < m < n \). Let \(z_1, z_2 \in A_n. \)

Case (i). If \(z_1, z_2 \in A_{n-1} \), then \(z_1 - z_2 \in A_{n-1} \subseteq A_n. \)

Case (ii). If \(z_1, z_2 \in \bigcup Y_n \) let \(u_1, u_2 \in \bigcup Y_n \) such that \(u_1, u_2 \in \bigcup Y_{n-1} \) with \((z_1, w_1) \in H \), \((z_2, w_2) \in H \). Thus \((z_1 - z_2, w_1 - w_2) \in H \). If \(w_1 - w_2 = 0 \), then \(z_1 - z_2 \in B_1 \). \(w_1 \in B_1 \), then \(z_1 - z_2 \in \emptyset \). Finally, if \(w_1 - w_2 \in \bigcup Y_i \) for some \(i \leq n - 1 \), then \(w_1 - w_2 \in \bigcup Y_{i+1} \), thus \(z_1 - z_2 \in \bigcup Y_{i+1} \subseteq A_n. \)

Case (iii). If \(z_1 \in B_1 \), \(z_2 \in \bigcup Y_n \), let \(y \in \bigcup Y_n \) such that \(y \in \bigcup Y_{n-1} \) with \((z_2, y) \in H \). Since \((z_1, 0) \in H \), \((z_1 - z_2, -y) \in H \). Now \(-y \in \bigcup Y_i \) for some \(i \leq n - 1 \), hence \(-y \in \bigcup Y_{i+1} \) and \(z_1 - z_2 \in \bigcup Y_{i+1} \subseteq A_n. \)

Case (iv). If \(z_1 \in \bigcup \overline{Y}_n \), \(z_2 \in \bigcup \overline{Y}_n \) let \(w \in \bigcup \overline{Y}_{n-1} \) and \(b_1 \in B_1^* \) such that \((z_1, w) \in H \), \((z_2, b_1) \in H \). Thus \((z_1 - z_2, w - b_1) \in H \). Since \(w - b_1 \in \bigcup \overline{Y}_{n-1} \), \(w_1 \in \bigcup \overline{Y}_{n-1} \), \(z_1 - z_2 \in \bigcup \overline{Y}_n \). \(\bigcup \overline{Y}_n \subseteq A_n. \)

Case (v). Finally let \(z_1 \in \bigcup Y_i \) for some \(n > i > 0 \) and \(z_2 \in \bigcup Y_n \). Let \(w_1 \in \bigcup Y_{i-1} \), \(w_2 \in \bigcup Y_{n-1} \) such that \((z_1, w_1) \in H \), \((z_2, w_2) \in H \). Thus \((z_1 - z_2, w_1 - w_2) \in H \). Since \(w_1 - w_2 \in A_{n-1} \), \(w_1 - w_2 \in B_1 \) or \(w_1 - w_2 \in \bigcup Y_i \) for some \(i \leq n - 1 \). If \(w_1 - w_2 = 0 \) then \(z_1 - z_2 \in B_1 \subseteq A_n \), if \(w_1 - w_2 \in B_1^* \) then \(z_1 - z_2 \in \bigcup \overline{Y}_0 \subseteq A_n \). If \(w_1 - w_2 \in \bigcup Y_i \), then \(w_1 - w_2 \in \bigcup Y_{i+1} \), so \(z_1 - z_2 \in \bigcup \overline{Y}_{i+1} \subseteq A_n. \)

Lemma II.3. If \(N = M(G, 2, H) \) is zero-symmetric then \(Y \cap X = \emptyset \).

Proof. We first show that \(\bigcup \overline{Y}_0 \cap X = \emptyset \). Suppose \(y \in \bigcup \overline{Y}_0 \cap B_2 \). Let \(b_1 \in B_1^* \) such that \((y, b_1) \in H \). Since \(y \in B_2 \), \((b_1, y) \in H \). Thus \((y + b_1, b_1 + y) = (b_1 + y, b_1 + y) \in H \). Since \(N \) is zero-symmetric \(b_1 + y = 0, \) so \(y = -b_1. \) But \(B_1 \cap B_2 = \{0\} \), hence \(b_1 = 0 \), a contradiction. Consequently \(\bigcup \overline{Y}_0 \cap B_2 = \emptyset \). Suppose that \(y \in \bigcup \overline{Y}_0 \cap \bigcup \overline{X}_0 \). Let \(b_1 \in B_1^*, b_2 \in B_2^* \) such that \((y, b_1) \in H \), \((b_2, y) \in H \). Then \((y + b_2, b_1 + y) \in H \) and \((y + b_2, b_1 + y) = (y + b_2, y + b_1) \) for some \(b_1 \in B_1^* \). Since \((b_1, b_2) \in H \), \((y + b_2, b_1 + y) \in H \) and \((y + b_2, b_1 + y) = (y + b_1 + b_2, y + b_1 + b_2) \in H. \)
Thus $y + b_1 + b_2 = 0$ and $y + b_1 = -b_2$. Hence $y + b_1 \in \bigcup Y_0 \cap B_2$, a contradiction to our first statement. Therefore $\bigcup Y_0 \cap G_0 = \emptyset$. Suppose that $\bigcup Y_0 \cap G_m = \emptyset$ for all $0 \leq m < n$ and $y \in \bigcup Y_0 \cap G_n$. Then $y \in \bigcup X_n$ and there exists $r_1, \ldots, r_m \in G_{n-1}$ and $b_2 \in B_2^*$ such that $(r_1, y) \in H$, $(r_2, r_1) \in H_\ldots (r_m, r_{m-1}) \in H$ and $(b_2, r_m) \in H$. Therefore $(r_1 + \ldots + r_m + b_2, y + r_1 + \ldots + r_m) \in H$. Since $(y, b_1) \in H$ for some $b_1 \in B_1^*$, $(y + r_1 + \ldots + r_m + b_2, b_1 + y + r_1 + \ldots + r_m + b_2) \in H$. Since N is zero-symmetric we must have that $b_1 + y = -b_2 - r_m - \ldots - r_i$. From the previous Lemma, $-b_2 - r_m - \ldots - r_i \in G_{n-1}$ which implies $b_1 + y \in \bigcup Y_0 \cap G_{n-1}$, a contradiction. Hence $\bigcup Y_0 \cap G_n = \emptyset$, $\forall n \geq 0$. If $y \in \bigcup Y_0 \cup X_n$ for some $n \geq 1$, then for some $b_1 \in B_1$, $y + b_1 \in \bigcup Y_0 \cap G_{n-1}$ contradicting the previous situation. We have now shown that $\bigcup Y_0 \cap X = \emptyset$. Suppose that $\bigcup Y_m \cap X = \emptyset$, $\forall m \leq n$. Let $z \in \bigcup Y_n \cap X$. Then for some $b_1 \in B_1$ and some $n \geq 0$, $z + b_1 \in \bigcup X_n$ and therefore $z + b_1 \in \bigcup Y_n \cap \bigcup X_n$. Let $w \in \bigcup Y_n$ such that $w \in \bigcup Y_{n-1}$ and $(z + b_1, w) \in H$. Since $z + b_1 \in \bigcup X_n$, $z + b_1 \in \bigcup X_{n+1}$. Thus $w \in \bigcup X_{n+1} \cap \bigcup Y_{n-1}$, a contradiction. Consequently $\bigcup Y_n \cap X = \emptyset$, $\forall n \geq 0$. If $z \in \bigcup Y_n \cap X$ for some $n \geq 1$, then $z = z_1 + b_2$ for some $z_1 \in \bigcup Y_{n-1}$, $b_2 \in B_2$ and $z = z_2 + b_1$ for some $z_2 \in \bigcup X_n$, $b_1 \in B_1$. Since $z_1 + b_2 = z_2 + b_1$, $z_1 - b_1 = z_2 - b_2$. But $z_1 - b_1 \in \bigcup Y_{n-1}$ and $z_2 - b_2 \in \bigcup X_n$, a contradiction to $\bigcup Y_{n-1} \cap X = \emptyset$. The result now follows.

LEMMA II.4. If $M(G, 2, H)$ is zero-symmetric, then (1) $Y \cap (B_1 \oplus B_2) = \emptyset$.
(2) $X \cap (B_1 \oplus B_2) = \emptyset$.

PROOF. (1) We first show that $\bigcup Y_n \cap (B_1 \oplus B_2) = \emptyset$, $\forall n \geq 0$. As in the proof of Lemma II.3 we can see that $\bigcup Y_0 \cap (B_1 \oplus B_2) = \emptyset$, $0 \leq m < n$. If $y = b_1 + b_2$ for some $y \in \bigcup Y_n$, $b_1 \in B_1$, $b_2 \in B_2$ then $b_2 = y - b_1 \in \bigcup Y_n \cap B_2$. If $b_2 \neq 0$ then $Y_n \cap \bigcup X_0 = \emptyset$, a contradiction while if $b_2 = 0$ then $y = b_1 \in B_1$ which implies that $B_2 \in Y_n$ and therefore $B_2 \cap \bigcup Y_{n-1} = \emptyset$, a contradiction to our assumption. Thus $\bigcup Y_n \cap (B_1 \oplus B_2) = \emptyset$, $\forall n \geq 0$. If $b_1 + b_2 \in \bigcup Y_n$ for some $n \geq 1$, then for some $b_2 \in B_2$, $b_1 + b_2 \in \bigcup Y_{n-1}$, a contradiction. This establishes (1). The second statement can be shown in a similar way.

LEMMA II.5. If $M(G, 2, H)$ is zero-symmetric, then
(1) $\bigcup Y_n \cap \bigcup Y_{k=0}^n \cup Y_n = \emptyset$, $\forall n \geq 0$,
(2) $\bigcup X_n \cap \bigcup X_{k=0}^n \cup X_n = \emptyset$, $\forall n \geq 0$.

PROOF. (1) Let n be minimal so that $\bigcup Y_n \cap \bigcup Y_{k=0}^n \cup Y_n \neq \emptyset$. Obviously $n \geq 1$. Then $\bigcup Y_m \cap \bigcup Y_{k=0}^m Y_n = \emptyset$ for all $0 \leq m < n$. Let $y \in \bigcup Y_n \cap \bigcup Y_{k=0}^n \cup Y_k$, say $y \in Y_j$ for some $1 \leq j \leq n$. Suppose that $y \neq \bigcup Y_{j-1}$. Let $x \in \bigcup Y_n$ such that $x \in \bigcup Y_{n-1}$ and $(y, x) \in H$. If $j - 1 \neq 0$ then $x \in \bigcup Y_{n-1} \cap \bigcup Y_{j-1}$, a contradiction. If $j - 1 = 0$, then $x \in B_1 \oplus B_2 \cap \bigcup Y_{n-1}$ which contradicts Lemma II.4. Consequently $y \notin \bigcup Y_{j-1}$, so $y + b_2 \in \bigcup Y_{j-1}$ for some $b_2 \in B_2$. But then $-(y + b_2) + y = -b_2 - y + y = -b_2 \in A_n$. By Lemma II.4 $-b_2 \in B_1^*$, a contradiction since $B_1 \oplus B_2 = \{0\}$. The other statement follows similarly.

The finite case now follows from the above lemmas.
THEOREM II.6. Let G be a finite group, $|G| \geq 3$ and $H = G/B_1 \times \sigma G/B_2$. If $M(G,2,H)$ is zero-symmetric, then $B_1 = \{0\} = B_2$.

PROOF. Suppose that $B_1 \neq \{0\}$. Then $B_2 \neq \{0\}$ and since G is finite there exists a positive integer n such that $\bigcup \nabla_n \cap \bigcup \kappa = \emptyset$. The result now follows from Lemma II.5.

From Theorem II.6 we note that when G is a finite group and $H = G/B_1 \times \sigma G/B_2$ with $B_1 \neq \{0\}$ and $B_2 \neq \{0\}$ then there exists $x \in G^*$ such that $(x,x) \in H$. This implies that every group H of this form contains a nontrivial subgroup of the diagonal $\{(x,x)|x \in G\}$. Therefore the associated near-ring $M(G,2,H)$ cannot be zero-symmetric. We now present an example to show that this is not the case when G is infinite.

EXAMPLE II.7. Let $\{0\} \neq A$ be a group with identity 0, $G = \bigoplus_{z \in \mathbb{Z}} A = \{(x_z)_{z \in \mathbb{Z}} \in A^\mathbb{Z}|x_z = 0$ for all but finitely many $z \in \mathbb{Z}\}$. Further let $B_1 = \{(x_z)_{z \in \mathbb{Z}} \in G|x_z = 0, \forall z \neq 0\}$ and $B_2 = \{(x_z)_{z \in \mathbb{Z}} \in G|x_z = 0, \forall z \neq 1\}$. Define $\phi: G/B_1 \rightarrow G/B_2$ by $\phi((x_z)_{z \in \mathbb{Z}} + B_1) = (y_z)_{z \in \mathbb{Z}} + B_2$ where $y_z = x_{z-1} \forall z \in \mathbb{Z}$.

It is straightforward to verify that ϕ is an isomorphism, so ϕ determines a 2-fold meromorphic product $H = G/B_1 \times_{\phi} G/B_2$ with $B_1 \neq \{0\}$ and $B_2 \neq \{0\}$. One can check that $(x_z)_{z \in \mathbb{Z}} + B_1 \cap \phi((x_z)_{z \in \mathbb{Z}} + B_1) = \emptyset$ for all $(x_z)_{z \in \mathbb{Z}} \in G \setminus B_1$. Since $B_1 \cap B_2 = \{0\}$ it follows that there is no $x \in G^*$ such that $(x,x) \in H$. Thus $M(G,2,H)$ is zero-symmetric.

We are now ready to establish our major result.

THEOREM II.8. Let G be an arbitrary group, $|G| \geq 3$ and $H = G/B_1 \times \sigma G/B_2$. If $N = M(G,2,H)$ is a near-field, then $B_1 = \{0\} = B_2$.

PROOF. Case (A): We first suppose that $B_1 \neq \{0\}$ and $B_2 \neq \{0\}$. We may also assume that there is no $0 \not= x \in G$ with $(x,x) \in H$. We define a function $f: G \rightarrow G$ as follows.

(i) Let $f(0) = 0$, $f(b_{1\eta}) = b_{11}$ for all $1 \leq \eta < \alpha$, $f(b_{2\eta}) = b_{21}$ for all $1 \leq \gamma < \beta$ and if $b_{1\eta} + b_{2\gamma} \in B_1 \oplus B_2$, $1 \leq \eta < \alpha$, $1 \leq \gamma < \beta$ let $f(b_{1\eta} + b_{2\gamma}) = b_{11} + b_{21}$.

(ii) If $b_2 \in B_2$ define $f(x_1 + b_2) = x_1$. For $2 \leq \gamma < \beta$ let $f(x_\gamma) = x_1$ and $f((x_1 + b_2) = x_1 + b_{11}$ if $b_2 \in B_2^*$. Thus f is defined on $\bigcup \nabla_m$.

Suppose we have defined f on $\bigcup X_m$ and $\bigcup \overline{X}_m$ for each $0 < m < n$.

(iii) For $x \in \bigcup \overline{X}_{n-1}$ and $b_1 \in B_1^*$ let $f(x + b_1) = b_{11} + f(x)$. This defines f on $\bigcup X_n$.

(iv) In order to define f on $\bigcup \overline{X}_n$ we choose an arbitrary but fixed set of coset representatives $\{w_\xi|\xi < \delta_n\}$ of \overline{X}_n such that for each $z_\xi + B_1 \in X_n$, $\sigma(z_\xi + B_1) = w_\xi + B_2$. If $\sigma(f(z_\xi) + B_1) = w_\xi + B_2$ we define $f(w_\xi + b_2) = w_\xi + b_{11}$ if $b_2 \in B_2^*$ and $f(w_\xi) = w_\xi$.

In a similar manner we now define f on Y.

(v) If $b_1 \in B_1$ let $f(y_1 + b_1) = y_1$. If $2 \leq \xi < \alpha$ let $f(y_\eta) = y_1$ and $f(y_\eta + b_1) = y_1 + b_{11}$ for $b_1 \in B_1^*$.

Suppose f has been defined on $\bigcup Y_m$ and $\bigcup \overline{Y}_m$ for all $0 \leq m < n$.

(vi) For all $y \in \bigcup \overline{Y}_{n-1}$ and $b_2 \in B_2^*$ let $f(y + b_2) = f(y) + b_{21}$.

(vii) Choose an arbitrary but fixed set of coset representatives $\{w_\xi|\xi < \delta_n\}$ of \overline{Y}_n such that for $z_\xi + B_2 \in \bigcup Y_n$, $\sigma^{-1}(z_\xi + B_2) = w_\xi + B_1$. If $\sigma^{-1}(f(z_\xi) + B_2) = w_\xi + B_1$ define $f(w_\xi) = w_\xi$ and $f(w_\xi + b_1) = w_\xi + b_{11}$ for $b_1 \in B_1^*$.
We have now defined \(f \) on \(X \cup Y \cup B_1 \oplus B_2 \).

(viii) Let \(S = \{ y + x | y \in \bigcup Y_n \text{ for some } n \geq 0, x \in \bigcup X_m \text{ for some } m \geq 0 \} \). For \(y + x \in S \) let \(f(y + x) = f(y) + f(x) \).

(ix) Finally define \(f(z) = z \) if \(z \notin X \cup Y \cup S \cup B_1 \oplus B_2 \).

We now show that \(f \in N \).

1: \(f \) is well defined.

(i) Since \(B_1 \cap B_2 = \{0\} \), \(f \) is well defined on \(B_1 \oplus B_2 \).

(ii) Let \(n \geq 1 \). We need to show that \(f \) is well defined on \(X \).

Let \(\{ w_\xi | \xi < \delta \} \) be a set of representatives for the cosets in \(\bigcup X_{\kappa-1} \) and let \(y \in \bigcup X_n \). Then \(y \) has the form \(y = x + b_1 \) for some \(x \in \bigcup X_{\kappa-1}, b_1 \in B_1 \). Suppose \(y = w_{\xi_1} + b_1 + b_2 = w_{\xi_2} + b_1' + b_1'' \), where \(b_1, b_1' \in B_1, b_2, b_1'' \in B_2, \xi \neq \xi' \). Then \(-b_2 - w_{\xi_1} + w_{\xi_2} + b_1' - b_1 \in G_{\kappa-1} \cap B_1 \). By Lemma II.4 and since \(B_1 \cap B_2 = \{0\} \) this can only happen if \(-b_2 - w_{\xi_1} + w_{\xi_2} + b_1' - b_1 = 0 \). But then \(w_{\xi_1} + b_2 = w_{\xi_2} + b_1' \), a contradiction. By Lemma II.5, \(f \) is well defined on \(X \).

(iii) Similar arguments show that \(f \) is well defined on \(Y \).

(iv) We show that \(f \) is well defined on \(S \). Suppose that \(y_1 + x_1 = y_2 + x_2 \), \(y_1 \in \bigcup Y_j, y_2 \in \bigcup Y_i, x_1 \in \bigcup X_m, x_2 \in \bigcup X_n \). Then \(-y_2 + y_1 = x_2 - x_1 \in Y \cup B_1 \cap X \cup B_2 \) by Lemma II.2. According to Lemmas II.3 and II.4 this implies \(y_1 = y_2 \) and \(x_1 = x_2 \).

It is easy to show from Lemmas II.3 and II.4 that \(S \cap X = \emptyset, S \cap Y = \emptyset \) and that \(S \cap B_1 \oplus B_2 = \emptyset \). Suppose, for example, \(y + x \in \bigcup X_k \cap S \) for some \(\kappa \geq 1 \). Then \(y + x = x' + b_1 \) for some \(x' \in \bigcup X_{\kappa-1}, b_1 \in B_1 \). Then \(y + x - b_1 = x' \), so \(y + b_1 = x' - x \in Y \cap (X \cup B_2) \) for some \(b_1 \in B_1 \). This contradicts Lemmas II.3 and II.4.

Lemmas II.3 and II.4 now show that \(f \) is well defined on \(G \).

2: \(f \in N \). Let \((x, y) \in H \). We must show that \(f((x, y)) = (f(x), f(y)) \in H \).

Case (i) If \(x \in B_1 \), then \(y \in B_2 \), so \(f((x, y)) \in H \).

Case (ii) If \(x = b_2 + b_1 \), \(1 \leq \gamma < \beta \), \(b_1 \in B_1 \), then \(y = x_\gamma + b_2 \) for some \(b_2 \in B_2 \).

Now \(f(x) = b_2 \) or \(f(x) = b_2 + b_1 + b_21 \), and \(f(y) = x_1 \) or \(f(y) = x_1 + b_21 \). In any case \((f(x), f(y)) \in H \).

Case (iii) Let \(x \in X \). If \(x \in \bigcup X_k \) for some \(\kappa \geq 1 \), then \(y \in \bigcup X_k \). We have that \(x = x' + B_1 \) for some \(x' \in \bigcup X_{\kappa-1} \). By construction of \(f \), \(f(x) \in f(x') + B_1 \) and \(f(y) \in \sigma f(x') + B_1 \). Thus \((f(x), f(y)) \in H \). If \(x \in \bigcup X_k \) for some \(\kappa \geq 0 \), then \(x \in \bigcup X_{\kappa+1} \) and we are back to the previous case.

Case (iv) Let \(x \in Y \). If \(x = y_\eta + b_1 \in \bigcup Y_0 \), then \(y = b_1 + y_\eta \), \(1 \leq \eta < \alpha \) for some \(b_1 \in B_2 \). Now \(f(x) = y_1 \) or \(f(x) = y_1 + b_21 \) and \(f(y) = b_1 + y_1 \) or \(f(y) = b_1 + b_21 \). In any case \((f(x), f(y)) \in H \). Let \(x \in \bigcup Y_n \) for some \(n \geq 1 \). Then \(y \in \bigcup Y_n \) and with arguments similar to those in case (iii), we can show that \((f(x), f(y)) \in H \). Let \(x \in \bigcup Y_1 \). If \(x \in \bigcup Y_0 \) we have just seen that \((f(x), f(y)) \in H \). Hence we may assume that \(x = x' + b_2 \gamma \) for some \(x' \in \bigcup Y_0, 1 \leq \gamma < \beta \). Let \(1 \leq \eta < \alpha \) so that \((x', b_1) \in H \). Hence \(y = b_1 + x_\eta + b_2 \) for some \(b_2 \in B_2 \). Now \(f(x) = f(x' + b_2 \gamma) = f(x') + b_2 \) and \(f(x') + b_2 = f(x') + b_21 \in y_1 + b_21 + b_2 \). Further \(f(y) = f(y_1 + x_\gamma + b_2) = b_21 + f(x_\gamma + b_2) \) and \(b_21 + f(x_\gamma + b_2) = b_21 + x_1 + b_21 \) or \(b_21 + f(x_\gamma + b_2) = b_21 + x_1 + b_21 \). In any case \((f(x), f(y)) \in H \).

Finally if \(x \in \bigcup Y_n \) for some \(n \geq 2 \), then \(x = x' + b_2 \gamma \) for some \(x' \in \bigcup Y_{n-1} \), \(b_2 \in B_2 \). We may assume that \(b_2 = b_2 \gamma \in B_2 \). Let \(y' \in \bigcup Y_{n-1} \) such that \(y' \in \bigcup Y_{n-2} \) with \((x', y') \in H \). Then \((x' + b_2 \gamma, y' + x_\gamma) \in H \), thus \(y = y' + x_\gamma + b_2 \).
for some $b_2 \in B_2$. Since $y \in S$, $(f(x), f(y)) = (f(x') + b_2, f(y') + f(x_2 + b_2))$ is
either equal to $(f(x') + b_2, f(y') + x_1 + b_2)$ or equal to $(f(x') + b_1, f(y') + x_1)$. Since
$(f(x'), f(y')) \in H$ as shown previously and $(b_2, x_1) \in H$ we have $(f(x), f(y)) \in H$.

Case (v) Let $x \in S$, say $x = y^* + x^*$, $y^* \in \bigcup \Sigma_{n-1}$, $x^* \in \bigcup \Sigma_{m+1}$
Suppose that $n \geq 1$. Let $y \in \bigcup \Sigma_n$ such that $y \in \bigcup \Sigma_{n-1}$ with $(y^*, y) \in H$ and $x \in \bigcup \Sigma_{m+1}$ such
that $(x^*, x) \in H$. Then $(y^* + x^*, y + x) \in H$. Thus $y = y^* + x^* + b_2$ for
some $b_2 \in B_2$ and $(f(x), f(y)) = (f(y^*) + f(x^*), f(y) + f(x + b_2)) \in H$ according
to Cases (iii) and (iv). If $n = 0$, $y^* \in \bigcup \Sigma_0$. Let $b_1n \in B_1$ with $(y^*, b_1n) \in H$. Then
$(y^* + x^*, b_1n + x) \in H$. Thus $y = b_1n + x + b_2$ for some $b_2 \in B_2$. Hence
$(f(x), f(y)) = (f(y^*) + f(x^*), b_1n + f(x + b_2)) \in H$, since $(f(x^*), f(x + b_2)) \in H$.

Case (vi) Let $x \in \mathbb{G} \setminus (\bigcup \Sigma \cup \Sigma \Sigma B_1 \cup B_2)$. Then clearly $y \notin B_1 \cup B_2$, $y \notin \bigcup \Sigma_{\kappa}$
for any $\kappa \geq 0$, $y \notin Y$. Suppose $y \in \bigcup \Sigma_{n-1}$ for some $\kappa \geq 1$. If $\kappa = 1$, then $y = b_1 + y$
for some $y \in \bigcup \Sigma_0$. Since $y \notin \bigcup \Sigma_0$, $b_1 \neq b_1n$. Now $(b_2, y) \in \Sigma$ for some
$b_2 \in B_2$. Hence $(y + b_2, b_1 + y) \in H$. Thus $x = y + b_2 + b_1$ for some $b_1 \in B_1$. Hence
$x \in \bigcup \Sigma_1$, a contradiction. As $\kappa \geq 2$ let $y = b_1n + y$ for some $y \in \bigcup \Sigma_{\kappa-1}$,
$1 \leq \eta < \alpha$. Let $x \in \bigcup \Sigma_{\kappa-2}$ such that $(x, y) \in H$. Then $x = y + b_2 + b_1$ for $\kappa \geq 1$.
Consequently $(f(x), f(y)) = (x, y) \in H$.

Now follows that $f \in N$. Clearly f is not invertible, since $B_2 \neq \{0\}$ by
assumption and $f(x_2 + b_2) = x$, $\forall b_2 \in B_2$.

Case (B). Suppose that either $B_1 = \{0\}$ or $B_2 = \{0\}$. W.l.o.g. we may assume that
$B_2 = \{0\}$, $B_1 \neq \{0\}$. Then $X = \varnothing$, $S = \varnothing$, $B_1 \cup B_2 = B_1$. Define the function
$f: \mathbb{G} \rightarrow \mathbb{G}$ on $Y \cup B_1$ in the same way as before, noting that $\bigcup \Sigma_n = \bigcup \Sigma_{n-1}$
for all $n \geq 1$. For $z \notin Y \cup B_1$ let $f(z) = z$. As in Case (A) one can verify that f is well
defined, $f \in N$ but f is not invertible since $f(y_1 + b_2) = y_1$ for all $b_1 \in B_1$.

In both cases we obtain a noninvertible function $f \in M(\mathbb{G}, 2, H)$, a contradiction
to N being a near-field. Thus $B_1 = \{0\} = B_2$.

We now show that the only near-fields arising in the case $\kappa = 2$ are fields. From
the discussion prior to Lemma II.1 we see this is the case for $|\mathbb{G}| = 2$. We now turn
to $|\mathbb{G}| > 2$. If A is a group of automorphisms of \mathbb{G}, then A° denotes the group with
the zero map adjoined.

Theorem II.9. Let $|\mathbb{G}| \geq 3$. If $N = M(\mathbb{G}, 2, H)$ is a near-field then N is a
field. In fact, $N = M_{A^\circ}(G)$ where $A = \langle \alpha \rangle$ is a cyclic group of automorphisms of
G such that $G = X \times \{0\}$ for $x \in G^*$. Conversely, if $B = \langle \beta \rangle$ is a cyclic group
of automorphisms of G such that $G = X \times \{0\}$ for $x \in G^*$, then $M_{B^\circ}(G)$ is a
near-field and $M_{B^\circ}(G) = M(\mathbb{G}, 2, H)$ where $H = G \times \beta G$.

Proof. From Lemma II.1 and Theorem II.8, $H = G \times \alpha G = \{(x, \alpha(x))|x \in G\}$. But then $f \in N$ if and only if $\alpha f(x) = f(\alpha x)$ for all $x \in G$, i.e., if and only if f belongs to the centralizer near-ring $M(\alpha)^c(G)$. Since N is a near-field it is well
known (see [1]) that G^* must be the only nonzero orbit for $A = \langle \alpha \rangle$. Finally since A is abelian, $M_{A^0}(G)$ is a field. For the converse it is clear that $M_{B^0}(G) = M(G, 2, H)$ with $H = G \times \beta G$ and again from [1] we see that $M(G, 2, H)$ is a near-field since $((\beta), G)$ satisfies the needed finiteness condition.

COROLLARY II.10. If F is a finite field then $F \simeq M(G, 2, H)$ for some group G and some 2-fold meromorphic product H.

PROOF. We know $F \simeq M_F(F)$ and $F^* = \langle \alpha \rangle$. By the above theorem, $F \simeq M(F, 2, F \times \alpha F)$.

COROLLARY II.11. Let $|G| \geq 3$. H is an invariant linear 2-relation of the form $G \times \sigma G$ with $\langle \sigma \rangle$ transitive on G^* if and only if $M(G, 2, H)$ is a field.

We conclude the paper with an example to show that the situation is quite different for $\kappa = 3$. Indeed, we see that one can have a meromorphic product $H = G/B_1 \times \sigma_1 G/B_2 \times \sigma_2 G/B_3$ such that $N = M(G, 3, H)$ is a near-field but $B_1 \neq \{0\}$, $B_2 \neq \{0\}$ and $B_3 \neq \{0\}$.

EXAMPLE II.12. Let $G = \mathbb{Z}_2^3$ with the usual basis $\{e_1, e_2, e_3, e_4\}$ and let $B_1 = B_2 = B_3 = G$. Let $\overline{B}_1 = \langle e_1 + e_2, e_3 + e_4 \rangle$, $\overline{B}_2 = \langle e_1, e_1 + e_3 + e_4 \rangle$ and $\overline{B}_3 = \langle e_1, e_1 + e_2 + e_3 \rangle$. The following scheme determines a meromorphic product $H:

\begin{align*}
\overline{B}_1 &\mapsto \overline{B}_2 \mapsto \overline{B}_3, \\
e_1 + \overline{B}_1 &\mapsto e_4 + \overline{B}_2 \mapsto e_1 + e_2 + e_4 + \overline{B}_3, \\
e_1 + e_4 + \overline{B}_1 &\mapsto e_1 + e_2 + \overline{B}_2 \mapsto e_1 + e_4 + \overline{B}_3, \\
e_4 + \overline{B}_1 &\mapsto e_2 + e_3 + \overline{B}_2 \mapsto e_2 + \overline{B}_3.
\end{align*}

One can check that $M(G, 3, H) = \{0, \text{id}\}$.

REFERENCES

6. H. Wielandt, *Permutation groups through invariant relations and invariant functions*, Lecture Notes, Ohio State University, Columbus, 1969.

DEPARTMENT OF MATHEMATICS, TEXAS A & M UNIVERSITY, COLLEGE STATION, TEXAS 77843 (Current address of C. J. Maxson)

Current address (Peter Fuchs): Department of Mathematics, Johannes Kepler Universität, A-4040 Linz, Austria