Yet more on the differentiability of convex functions

Author:
John Rainwater

Journal:
Proc. Amer. Math. Soc. **103** (1988), 773-778

MSC:
Primary 46G05; Secondary 26B05, 46B22, 58C06, 90C48

DOI:
https://doi.org/10.1090/S0002-9939-1988-0947656-7

MathSciNet review:
947656

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Generic differentiability theorems are obtained for convex functions which are defined and locally Lipschitzian on the convex subset of nonsupport points of a closed convex subset of a Banach space , which is assumed to be either an Asplund space (for Fréchet differentiability) or to be weakly compactly generated (for Gateaux differentiability).

**[1]**Edgar Asplund,*Fréchet differentiability of convex functions*, Acta Math.**121**(1968), 31–47. MR**0231199**, https://doi.org/10.1007/BF02391908**[2]**Jens Peter Reus Christensen,*Theorems of Namioka and R. E. Johnson type for upper semicontinuous and compact valued set-valued mappings*, Proc. Amer. Math. Soc.**86**(1982), no. 4, 649–655. MR**674099**, https://doi.org/10.1090/S0002-9939-1982-0674099-0**[3]**Joseph Diestel,*Geometry of Banach spaces—selected topics*, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR**0461094****[4]**John Giles,*Convex analysis with application to differentiation of convex functions*, Research Notes in Math., no. 58, Pitman, Boston, Mass., 1982.**[5]**Richard B. Holmes,*Geometric functional analysis and its applications*, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 24. MR**0410335****[6]**P. S. Kenderov,*Monotone operators in Asplund spaces*, C. R. Acad. Bulgare Sci.**30**(1977), no. 7, 963–964. MR**0463981****[7]**I. Namioka,*Separate continuity and joint continuity*, Pacific J. Math.**51**(1974), 515–531. MR**0370466****[8]**I. Namioka and R. R. Phelps,*Banach spaces which are Asplund spaces*, Duke Math. J.**42**(1975), no. 4, 735–750. MR**0390721****[9]**R. R. Phelps,*Some topological properties of support points of convex sets*, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), 1972, pp. 327–336 (1973). MR**0328558**, https://doi.org/10.1007/BF02762808**[10]**Charles Stegall,*A class of topological spaces and differentiation of functions on Banach spaces*, Proceedings of the conferences on vector measures and integral representations of operators, and on functional analysis/Banach space geometry (Essen, 1982) Vorlesungen Fachbereich Math. Univ. Essen, vol. 10, Univ. Essen, Essen, 1983, pp. 63–77. MR**730947****[11]**C. Stegall,*More Gâteaux differentiability spaces*, Banach spaces (Columbia, Mo., 1984) Lecture Notes in Math., vol. 1166, Springer, Berlin, 1985, pp. 186–199. MR**827772**, https://doi.org/10.1007/BFb0074706**[12]**Maria Elena Verona,*More on the differentiability of convex functions*, Proc. Amer. Math. Soc.**103**(1988), no. 1, 137–140. MR**938657**, https://doi.org/10.1090/S0002-9939-1988-0938657-3

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46G05,
26B05,
46B22,
58C06,
90C48

Retrieve articles in all journals with MSC: 46G05, 26B05, 46B22, 58C06, 90C48

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0947656-7

Keywords:
Convex functions,
convex sets,
support points,
Asplund spaces,
weak Asplund spaces,
usco maps

Article copyright:
© Copyright 1988
American Mathematical Society