Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Yet more on the differentiability of convex functions


Author: John Rainwater
Journal: Proc. Amer. Math. Soc. 103 (1988), 773-778
MSC: Primary 46G05; Secondary 26B05, 46B22, 58C06, 90C48
DOI: https://doi.org/10.1090/S0002-9939-1988-0947656-7
MathSciNet review: 947656
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Generic differentiability theorems are obtained for convex functions which are defined and locally Lipschitzian on the convex subset $ N(C)$ of nonsupport points of a closed convex subset $ C$ of a Banach space $ E$, which is assumed to be either an Asplund space (for Fréchet differentiability) or to be weakly compactly generated (for Gateaux differentiability).


References [Enhancements On Off] (What's this?)

  • [1] Edgar Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31-47. MR 0231199 (37:6754)
  • [2] J. P. R. Christensen, Theorems of Namioka and R. E. Johnson type for upper semicontinuous and compact-valued set-valued mappings, Proc. Amer. Math. Soc. 86 (1982), 649-655. MR 674099 (83k:54014)
  • [3] Joseph Diestel, Geometry of Banach spaces -- selected topics, Lecture Notes in Math., vol. 485, Springer-Verlag, 1975. MR 0461094 (57:1079)
  • [4] John Giles, Convex analysis with application to differentiation of convex functions, Research Notes in Math., no. 58, Pitman, Boston, Mass., 1982.
  • [5] R. B. Holmes, Geometric functional analysis and its applications, Springer-Verlag, 1975. MR 0410335 (53:14085)
  • [6] P. S. Kenderov, Monotone operators in Asplund spaces, C. R. Acad. Bulgare Sci. 30 (1977), 963-964. MR 0463981 (57:3919)
  • [7] I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515-531. MR 0370466 (51:6693)
  • [8] Isaac Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), 735-749. MR 0390721 (52:11544)
  • [9] R. R. Phelps, Some topological properties of support points of convex sets, Israel J. Math. 13 (1972), 327-336. MR 0328558 (48:6900)
  • [10] C. Stegall, A class of topological spaces and differentiation of functions on Banach spaces, Proc. Conf. on Vector Measures and Integral Representations of Operators, Vorlesungen aus dem Fachbereich. Math., Heft 10 (W. Ruess, ed.), Univ. Essen, 1983. MR 730947 (85j:46026)
  • [11] -, More Gateaux differentiability spaces, Proc. Conf. Banach Spaces, Univ. Missouri, 1984 (N. Kalton and E. Saab, eds.), Lecture Notes in Math., vol. 1166, Springer-Verlag, 1985, pp. 158-168. MR 827772 (87k:46094)
  • [12] M. E. Verona, More on the differentiability of convex functions, Proc. Amer. Math. Soc. 103 (1988), 137-140. MR 938657 (89f:58016)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46G05, 26B05, 46B22, 58C06, 90C48

Retrieve articles in all journals with MSC: 46G05, 26B05, 46B22, 58C06, 90C48


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0947656-7
Keywords: Convex functions, convex sets, support points, Asplund spaces, weak Asplund spaces, usco maps
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society