Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Karp's theorem in acoustic scattering theory


Authors: David Colton and Andreas Kirsch
Journal: Proc. Amer. Math. Soc. 103 (1988), 783-788
MSC: Primary 35R30; Secondary 35J05, 35P25, 76Q05
DOI: https://doi.org/10.1090/S0002-9939-1988-0947658-0
MathSciNet review: 947658
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Karp's Theorem states that if the far field pattern corresponding to the scattering of a time harmonic plane acoustic wave by a sound-soft cylinder is of the form $ {F_0}(k;\theta - \alpha )$ where $ k$ is the wave number, $ \theta $ the angle of observation and $ \alpha $ the angle of incidence of the plane wave, then the cylinder must be circular. A new proof is given of this result and extended to the cases of scattering by a sound-hard obstacle and an inhomogeneous medium.


References [Enhancements On Off] (What's this?)

  • [1] D. Colton and R. Kress, Integral equation methods in scattering theory, Wiley, New York, 1983. MR 700400 (85d:35001)
  • [2] D. Colton and P. Monk, A novel method for solving the inverse scattering problem for time harmonic acoustic waves in the resonance region, SIAM J. Appl. Math. 45 (1985), 1039-1053. MR 813464 (86m:73021)
  • [3] -, A novel method for solving the inverse scattering problem for time harmonic acoustic waves in the resonance region. II, SIAM J. Appl. Math. 46 (1986), 506-523. MR 841463 (87h:35336)
  • [4] P. J. Davis, Interpolation and approximation, Dover, New York, 1975. MR 0380189 (52:1089)
  • [5] A. J. Devaney, Acoustic tomography, Inverse Problems of Acoustic and Elastic Waves (F. Santosa et al., eds.), SIAM, Philadelphia, Pa., 1984, pp. 250-273. MR 804623 (86i:92009)
  • [6] A. Erdélyi et al., Higher transcendental Functions, vol. II, McGraw-Hill, New York, 1953.
  • [7] W. A. Imbriale and R. Mittra, The two dimensional inverse scattering problem, IEEE Trans. Antennas and Prop. AP-18 (1970), 633-642.
  • [8] S. N. Karp, Far field amplitudes and inverse diffraction theory, Electromagnetic Waves (R. E. Langer, ed.), Univ. of Wisconsin Press, Madison, 1962, pp. 291-300. MR 0129766 (23:B2802)
  • [9] A. Kirsch, Properties of far field operators in acoustic scattering, Math. Methods Appl. Sci. (to appear). MR 1021400 (90i:35074)
  • [10] A. G. Ramm, On completeness of the products of harmonic functions, Proc. Amer. Math. Soc. 98 (1986), 253-256. MR 854028 (87k:33008)
  • [11] B. D. Sleeman, The inverse problem of acoustic scattering, IMA J. Appl. Math. 29 (1982), 113-142. MR 679225 (84c:76063)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35R30, 35J05, 35P25, 76Q05

Retrieve articles in all journals with MSC: 35R30, 35J05, 35P25, 76Q05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0947658-0
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society