Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Smoothness of the billiard ball map for strictly convex domains near the boundary

Author: Valery Kovachev
Journal: Proc. Amer. Math. Soc. 103 (1988), 856-860
MSC: Primary 58F11; Secondary 58F10
MathSciNet review: 947670
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The billiard ball map in bounded strictly convex domains in $ {{\mathbf{R}}^n}$ with boundaries of class $ {C^k},k \geq 2$, is considered and its smoothness of class $ {C^{k - 1}}$ up to the boundary is proved.

References [Enhancements On Off] (What's this?)

  • [1] V. F. Lazutkin, \cyr Vypuklyĭ billiard i sobstvennye funktsii operatora Laplasa, Leningrad. Univ., Leningrad, 1981 (Russian). MR 633153
  • [2] -, On the existence of caustics for the billiard ball problem in a convex domain, Math. USSR-Izv. 7 (1973), 185-215.
  • [3] M. M. Dvorin and V. F. Lazutkin, Existence of an infinite number of elliptic and hyperbolic periodic trajectories for convex billiards, Funkcional. Anal. i Priložen. 7 (1973), no. 2, 20–27 (Russian). MR 0318600
  • [4] R. Douady, Application du théorème des tores invariants, Thèse de 3ème cycle, Université Paris VII, 1982.
  • [5] A. Katok and J.-M. Strelcyn, Smooth maps with singularities: Invariant manifolds, entropy and billiards, Lecture Notes in Math., vol. 1222, Springer-Verlag, Berlin and New York, 1986.
  • [6] J.-M. Strelcyn, Les applications différentiables avec singularités; les sous-variétés invariantes, l’entropie et les billards, Singularities, foliations and Hamiltonian mechanics (Balaruc, 1985) Travaux en Cours, Hermann, Paris, 1985, pp. 93–111 (French). MR 829792
  • [7] François Ledrappier and Jean-Marie Strelcyn, A proof of the estimation from below in Pesin’s entropy formula, Ergodic Theory Dynam. Systems 2 (1982), no. 2, 203–219 (1983). MR 693976,
  • [8] Ja. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk 32 (1977), no. 4 (196), 55–112, 287 (Russian). MR 0466791
  • [9] Ricardo Mañé, A proof of Pesin’s formula, Ergodic Theory Dynamical Systems 1 (1981), no. 1, 95–102. MR 627789

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58F11, 58F10

Retrieve articles in all journals with MSC: 58F11, 58F10

Additional Information

Keywords: Smoothness near the boundary, billiard, convex
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society