Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Partitioner-representable algebras


Authors: R. Frankiewicz and P. Zbierski
Journal: Proc. Amer. Math. Soc. 103 (1988), 926-928
MSC: Primary 03E50; Secondary 03E05, 06E05
DOI: https://doi.org/10.1090/S0002-9939-1988-0947684-1
MathSciNet review: 947684
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a simple proof of the theorem of Baumgartner and Weese on representability of Boolean algebras. We also show that the representability of $ P\left( {{\omega _1}} \right)$ implies the existence of a relative $ {Q_3}$-set.


References [Enhancements On Off] (What's this?)

  • [B-W] J. E. Baumgartner and M. Weese, Partition algebras for almost-disjoint sets, Trans. Amer. Math. Soc. 274 (1982), 619-630. MR 675070 (84g:03074)
  • [C-N] W. Comfort and S. Negrepontis, The theory of ultrafilters, Springer-Verlag, Berlin and New York, 1974. MR 0396267 (53:135)
  • [M] A. Miller, On the length of Borel hierarchies, Ann. Math. Logic 16 (1979), 233-267. MR 548475 (80m:04003)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03E50, 03E05, 06E05

Retrieve articles in all journals with MSC: 03E50, 03E05, 06E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0947684-1
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society