Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Compactly generated subgroups and open subgroups of locally compact groups


Authors: R. W. Bagley, T. S. Wu and J. S. Yang
Journal: Proc. Amer. Math. Soc. 103 (1988), 969-976
MSC: Primary 22D05
DOI: https://doi.org/10.1090/S0002-9939-1988-0947692-0
MathSciNet review: 947692
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper contains results of the following sort: If $ G$ is a locally compact group and $ H$ is a closed subgroup such that the coset space $ G/H$ is locally connected, then $ H{G_0}$ is open in $ G$. If $ G$ is a locally compact group such that $ G/{G_0}$ is compact, then every closed subgroup of $ G$ is compactly generated if and only if $ {G_0}$ has no noncompact simple factor.


References [Enhancements On Off] (What's this?)

  • [1] R. W. Bagley and T. S. Wu, Maximal compact normal subgroups and pro-Lie groups, Proc. Amer. Math. Soc. 93 (1985), 373-376. MR 770558 (86c:22005)
  • [2] R. W. Bagley, T. S. Wu, and J. S. Yang, On a class of topological group more general than SIN groups, Pacific J. Math. 117 (1985), 209-217. MR 779917 (86k:22003)
  • [3] -, Pro-Lie groups, Trans. Amer. Math. Soc. 287 (1985), 829-838. MR 768744 (86e:22006)
  • [4] R. W. Bagley, and J. S. Yang, Locally invariant toplogical groups and semidirect products, Proc. Amer. Math. Soc. 93 (1985), 139-144. MR 766544 (86f:22004)
  • [5] S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew Math. 246 (1971), 1-40. MR 0284541 (44:1766)
  • [6] D. H. Lee, Supplements for the identity component in locally compact groups, Math. Z. 104 (1968), 28-49. MR 0223486 (36:6534)
  • [7] D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1965. MR 0073104 (17:383b)
  • [8] V. P. Platonov, The structure of topological locally projectively nilpotent groups and groups with a normalizer condition, Mat. Sb. (N.S.) 114 (1967), 38-58. (Russian) MR 0202910 (34:2769)
  • [9] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, Berlin and New York, 1972. MR 0507234 (58:22394a)
  • [10] J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250-270. MR 0286898 (44:4105)
  • [11] S. P. Wang, Compactness properties of topological groups. III, Trans. Amer. Math. Soc. 209 (1975), 399-418. MR 0374329 (51:10529)
  • [12] T. S. Wu, On unimodular groups, Bull. Inst. Math. Acad. Sinica 11 (1983), 485-491. MR 726995 (85h:22009)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22D05

Retrieve articles in all journals with MSC: 22D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0947692-0
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society