Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Common fixed points for commuting and compatible maps on compacta


Author: Gerald Jungck
Journal: Proc. Amer. Math. Soc. 103 (1988), 977-983
MSC: Primary 54H25; Secondary 54E45
DOI: https://doi.org/10.1090/S0002-9939-1988-0947693-2
MathSciNet review: 947693
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Compatible maps--a generalization of commuting maps--are characterized in terms of coincidence points, and common fixed point theorems for compatible maps and commuting maps on compact metric spaces are obtained.


References [Enhancements On Off] (What's this?)

  • [1] Cheng Chun Chang, On a fixed point theorem of contractive type, Comment. Math. Univ. St. Paul 32 (1983), 15-19. MR 701928 (85a:54043)
  • [2] Shih-Sen Chang, A common fixed point theorem for commuting mappings, Proc. Amer. Math. Soc. 83 (1981), 645-652. MR 627712 (82j:54091)
  • [3] C. E. Chidume, Iterative approximation of fixed points of Lipschitzian pseudo-contractive mappings, Proc. Amer. Math. Soc. 99 (1987), 283-288. MR 870786 (87m:47122)
  • [4] G. Das and J. P. Dabata, A note on fixed points of commuting mappings of contractive type, Indian J. Math. 27 (1985), 49-51. MR 852133 (87i:54091)
  • [5] K. M. Das and V. Naik, Common fixed point theorems for commuting maps on metric spaces, Proc. Amer. Math. Soc. 77 (1979), 269-373.
  • [6] Brian Fisher, A common fixed point theorem for four mappings on a compact metric space, Bull Inst. Math. Acad. Sinica 12 (1984), 249-252. MR 764955 (85m:54047)
  • [7] -, Common fixed points of four mappings, Bull. Inst. Math. Acad. Sinica 11 (1983), 103-113. MR 718906 (85c:54079)
  • [8] Brian Fisher and M.S. Kahn, Some fixed point theorems for commuting mappings, Math. Nachr. 106 (1982), 323-326. MR 675765 (83k:54053)
  • [9] G. Jungck, Periodic and fixed points, and commuting mappings, Proc. Amer. Math. Soc. 76 (1979), 333-338. MR 537100 (80e:54057)
  • [10] -, Commuting mappings and fixed points, Amer. Math. Monthly 83 (1976), 261-263. MR 0400196 (53:4031)
  • [11] -, A common fixed point theorem for commuting maps on $ L$-spaces, Math. Japon. 25 (1980), 81-85. MR 571267 (81j:54074)
  • [12] -, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (1986), 771-779.
  • [13] -, Compatible mappings and common fixed points (2), Internat. J. Math. Math. Sci. 9 (1986), 285-288.
  • [14] Solomon Leader, Uniformly contractive fixed points in compact metric space, Proc. Amer. Math. Soc. 86 (1982), 153-158. MR 663887 (83j:54041)
  • [15] R. D. Pant, Common fixed points of two pairs of commuting mappings, Indian J. Pure Appl. Math. 17 (1986), 187-192. MR 830556 (87e:54101)
  • [16] Sehie Park and Jong Sook Bae, Extensions of a fixed point theorem of Meir and Keeler, Ark. Math. 19 (1881), 223-228. MR 650495 (83e:54048)
  • [17] Barada K. Ray, Remarks on a fixed point theorem of Gerald Jungck, J. Univ. Kuwait Sci. 12 (1985), 169-171. MR 827180 (87e:54106)
  • [18] Salvatore Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.) 32(46) (1982), 149-153. MR 710984 (85f:54107)
  • [19] -, On fixed points of weakly commuting mappings in compact metric spaces, Jnānābha 15 (1985), 79-91. MR 822927 (87a:54069)
  • [20] S. L. Singh and S. P. Singh, A fixed point theorem, Indian J. Pure Appl. Math. 11 (1980), 1584-1586. MR 617835 (82f:54081)
  • [21] S. L. Singh and B. M. L. Tivari, A note on recent generalizations of Jungck contraction principle, J. UPGC Acad. Soc. 3(1)(1986), 13-18. MR 914072 (88k:54081)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H25, 54E45

Retrieve articles in all journals with MSC: 54H25, 54E45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0947693-2
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society