Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Zeros of diagonal equations over finite fields


Author: Da Qing Wan
Journal: Proc. Amer. Math. Soc. 103 (1988), 1049-1052
MSC: Primary 11T41
DOI: https://doi.org/10.1090/S0002-9939-1988-0954981-2
MathSciNet review: 954981
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ N$ be the number of solutions $ ({x_1}, \ldots ,{x_n})$ of the equation (1)

$\displaystyle (1)\quad {c_1}x_1^{{d_1}} + {c_2}x_2^{{d_2}} + \cdots + {c_n}x_n^{{d_n}} = c$

over the finite field $ {F_q}$, where $ {d_i}\vert(q - 1),{c_i} \in F_q^*(i = 1, \ldots ,n)$, and $ c \in {F_q}$. If

$\displaystyle \frac{1} {{{d_1}}} + \frac{1} {{{d_2}}} + \cdots + \frac{1} {{{d_n}}} > b \geq 1$

for some positive integer $ b$, we prove that $ {q^b}\vert N$. This result is an improvement of the theorem that $ p\vert N$ obtained by B. Morlaye [7] and also by J. R. Joly [3].

References [Enhancements On Off] (What's this?)

  • [1] J. Ax, Zeros of polynomials over finite fields, Amer. J. Math. 86 (1964), 255-261. MR 0160775 (28:3986)
  • [2] K. Ireland and M. Rosen, A classical introduction to modern number theory, Graduate Texts in Math., vol. 84, Springer-Verlag, 1982. MR 661047 (83g:12001)
  • [3] J. R. Joly, Équations et variétés algébriques sur un corps fini, Enseign. Math. (2) 19 (1973), 1-117. MR 0327723 (48:6065)
  • [4] N. M. Katz, On a theorem of Ax, Amer. J. Math. 93 (1971), 485-499. MR 0288099 (44:5297)
  • [5] V. A. Lebesgue, Recherches sur les nombres, J. Math. Pures Appl. 1 (1832), 11-111; 2 (1832), 253-292; 3 (1832), 113-144.
  • [6] R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, 1983. MR 746963 (86c:11106)
  • [7] B. Morlaye, Équations diagonales non homogènes sur un corps fini, C. R. Acad. Sci. Paris Ser. A 272 (1971), 1545-1548. MR 0282948 (44:182)
  • [8] W. M. Schmidt, Equations over finite fields, Lecture Notes in Math., vol. 536, Springer-Verlag, 1976. MR 0429733 (55:2744)
  • [9] Sun Qi and Daqing Wan, On the equation $ \sum\nolimits_{i = 0}^n {1/{d_i} = 0(\bmod 1)} $ and its application, Proc. Amer. Math. Soc. 100 (1987), 220-224. MR 884454 (88e:11015)
  • [10] Daqing Wan, An elementary proof to a theorem of Katz, Amer. J. Math. (to appear). MR 980296 (90a:11148)
  • [11] E. Warning, Bermerkung zur Vorstehenden Arbeit von Herr Chevalley, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 76-83.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11T41

Retrieve articles in all journals with MSC: 11T41


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0954981-2
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society