ZEROES OF DIAGONAL EQUATIONS OVER FINITE FIELDS

DAQING WAN

(Communicated by Larry J. Goldstein)

ABSTRACT. Let \(N \) be the number of solutions \((x_1, \ldots, x_n)\) of the equation
\[
 c_1 x_1^{d_1} + c_2 x_2^{d_2} + \cdots + c_n x_n^{d_n} = c
\]
over the finite field \(F_q \), where \(d_i \mid (q - 1) \), \(c_i \in F_q^* \) \((i = 1, \ldots, n)\), and \(c \in F_q \). If
\[
 \frac{1}{d_1} + \frac{1}{d_2} + \cdots + \frac{1}{d_n} > b \geq 1
\]
for some positive integer \(b \), we prove that \(q^b \mid N \). This result is an improvement of the theorem that \(p \mid N \) obtained by B. Morlaye [7] and also by J. R. Joly [3].

1. Introduction. Let \(F_q \) be a finite field with \(q = p^f \) elements, where \(p \) is the characteristic of the field. Some attention has been given to the divisibility properties of the number \(N \) of solutions of an equation over \(F_q \). The basic idea of this research originated from Lebesgue [5], who first noted that
\[
 N(f(x) = 0) \equiv \sum_{c \in F_q^*} (1 - f(c)^{q-1}) \quad (\text{mod } p)
\]
where \(f(x) \in F_q[x] \). After that, it was Warning [11] who first arrived at the conclusion that \(p \mid N(f(x_1, \ldots, x_n) = 0) \) for \(f(x_1, \ldots, x_n) \in F_q[x_1, \ldots, x_n] \) with \(\deg(f) < n \), and generalized this result to a system of polynomials. In 1962, J. Ax [1] found a major improvement of Warning's theorem which, in a sense, is best possible. He proved that if \(b \) is the largest integer such that \(b < n/d \), then \(q^b \mid N(f(x_1, \ldots, x_n) = 0) \) for any polynomial \(f(x_1, \ldots, x_n) \in F_q[x_1, \ldots, x_n] \) with \(\deg(f) = d \). In 1971, Ax's theorem was generalized to systems of equations by N. M. Katz [4]. This generalization, in a sense, is also best possible. A more elementary proof of Katz's theorem can be found in [10]. Therefore, the general study of the divisibility properties of the number \(N \) by powers of \(p \) may have come to an end.

For special kinds of equations, however, further results about divisibility of \(N \) by \(p \) can still be obtained by using arithmetic properties of multinomial coefficients. One such result is a theorem of Morlaye [7] and Joly [3] (see also [6, pp. 297–298]), which shows that \(p \mid N \), the number of solutions to the diagonal equation (1) over \(F_q \), provided that \(1/d_1 + 1/d_2 + \cdots + 1/d_n > 1 \).

In this paper, using some ideas of Ax [1], we shall improve the theorem of Morlaye and Joly, and obtain a theorem with the same quality as Ax's theorem. That is,
we have

THEOREM 1. Let \(n \) be the number of solutions of the diagonal equation (1) over \(F_q \). If there is a positive integer \(b \) such that

\[
\frac{1}{d_1} + \frac{1}{d_2} + \cdots + \frac{1}{d_n} > b \geq 1,
\]

then

\[
N \equiv 0 \pmod{q^b}.
\]

Note that if \(d_1 = d_2 = \cdots = d_n = d \), a divisor of \((q-1)\), then Theorem 1 reduces to a special case of Ax's theorem.

2. An auxiliary lemma. For convenience, first we introduce a lemma which is important in the proof of Theorem 1.

LEMMA 2. Let \(d_i \mid (q - 1) \) (\(i = 1, \ldots, n \)), \(q = p^f \), and \(\sum 1/d_i > b \), where \(b \) is a nonnegative integer. For any \(l_i \) (\(1 \leq l_i \leq d_i - 1 \)), \((i = 1, \ldots, n) \) with \(\sum l_i/d_i \equiv 0 \pmod{1} \), suppose

\[
\frac{q-1}{d_i} l_i = a_{i0} + a_{i1} p + \cdots + a_{i(f-1)} p^{f-1}, \quad 0 \leq a_{ij} < p,
\]

and let

\[
S = \sum_{i=1}^{n} \sum_{j=0}^{f-1} a_{ij}.
\]

Then \(S \geq f(b+1)(p-1) \).

PROOF. For any integers \(j \) and \(r \) with \(j \equiv r \pmod{f} \) and \(0 \leq r \leq f - 1 \), we define \(a_{ij} = a_{ir} \). Since

\[
\frac{q-1}{d_i} l_i = \sum_{j=0}^{f-1} a_{ij} p^j,
\]

it follows that, letting \((x)_d \) denote the smallest nonnegative residue of \(x \mod d \), we have

\[
\frac{q-1}{d_i} (l_i p^k)_{d_i} = \left(\frac{q-1}{d_i} l_i p^k \right)_{q-1} = \sum_{j=0}^{f-1} a_{i(j-k)} p^j.
\]

Thus

\[
\sum_{t=1}^{n} \sum_{k=0}^{f-1} \frac{q-1}{d_i} (l_i p^k)_{d_i} = \left(\sum_{i=1}^{n} \sum_{k=0}^{f-1} a_{ik} \right) \frac{q-1}{p-1}.
\]

On the other hand,

\[
\sum_{t=1}^{n} \frac{(l_i p^k)_{d_i}}{d_i} \equiv \sum_{t=1}^{n} l_i p^k \equiv p^k \sum_{t=1}^{n} l_i \equiv 0 \pmod{1},
\]

and

\[
\sum_{t=1}^{n} \frac{(l_i p^k)_{d_i}}{d_i} \geq \sum_{t=1}^{n} \frac{1}{d_i} > b.
\]
Therefore, \(\sum (l_i p^k)_{d_i} / d_i \) is integral and

\[
\sum_{i=1}^{n} \frac{(l_i p^k)_{d_i}}{d_i} \geq b + 1.
\]

Now, (3) gives

\[
S \geq (p - 1) \sum_{k=0}^{f-1} \sum_{i=1}^{n} \frac{(l_i p^k)_{d_i}}{d_i} \geq (p - 1) f(b + 1).
\]

Lemma 2 is proved.

3. Proof of Theorem 1. If \(c \neq 0 \), we have the identity

\[
N(c_1 x_1^{d_1} + \cdots + c_n x_n^{d_n} = c)
= \frac{1}{q - 1} [N(c_1 x_1^{d_1} + \cdots + c_n x_n^{d_n} - c x_{n+1}^{q-1} = 0) - N(c_1 x_1^{d_1} + \cdots + c_N x_n^{d_n} = 0)].
\]

Since \(1/d_1 + \cdots + 1/d_n + 1/(q - 1) > 1/d_1 + \cdots + 1/d_n \), it is sufficient to prove Theorem 1 for \(c = 0 \). In the following, we let \(N \) denote the number of solutions of the equation

\[
c_1 x_1^{d_1} + c_2 x_2^{d_2} + \cdots + c_n x_n^{d_n} = 0
\]

over \(F_q \), where \(c_i \in F_q^* \).

It is well known that \(N \) can be evaluated by means of Gauss sums. Take a multiplicative character \(\chi \) of \(F_q \) of order \((q - 1)/d_i \) and put \(x_i = x_1^{(q - 1)/d_i} \). Then \(x_i \) is a multiplicative character of \(F_q \) of order \(d_i \) \((i = 1, \ldots, n)\). From [6, pp. 293–294], we see that

\[
(6) \quad N = q^{n-1} + \frac{q - 1}{q} \sum_{(j_1, \ldots, j_n) \in T} \chi_1(c_1)^{-j_1} \cdots \chi_n(c_n)^{-j_n} G(\chi_1^{j_1}) \cdots G(\chi_n^{j_n}),
\]

where \(T \) is the set of all \(n \)-tuples \((j_1, \ldots, j_n) \in Z^n\) such that \(1 \leq j_i \leq d_i - 1 \) for \(1 \leq i \leq n \) and \(\sum j_i / d_i \equiv 0 \) (mod 1), and the Gauss sums are defined by

\[
G(\chi^j) = \sum_{c \in F_q} \chi^j(c) e^{2\pi i c / q}.
\]

(6) can be written as

\[
(7) \quad N = q^{n-1} + \frac{q - 1}{q} \sum_{(j_1, \ldots, j_n) \in T} \chi(c_1)^{-((q - 1)/d_1)j_1} \cdots \chi(c_n)^{-((q - 1)/d_n)j_n} G(\chi^{((q - 1)/d_1)j_1}) \cdots G(\chi^{((q - 1)/d_n)j_n}).
\]

If \(0 \leq a \leq q - 1 \), write \(a = \sum_{i=0}^{f-1} a_i p^i \) with \(0 \leq a_i < p \) and define \(\sigma(a) = \sum_{i=0}^{f-1} a_i \).

Suppose \(\eta_p = 1 - e^{2\pi i / p} \); then Stickelberger’s congruence [2, p. 212] gives

\[
G(\chi^{((q - 1)/d_i)j_i}) \equiv 0 \pmod{\eta_p^{\Delta_1}},
\]

where \(\Delta_1 = \sigma(((q - 1)/d_i)j_i) \).

Since \(\eta_p^{p-1} = p \varepsilon \), where \(\varepsilon \) is a unit of \(Q(e^{2\pi i / p}) \), from (7) we deduce that

\[
(8) \quad N - q^{n-1} \equiv 0 \pmod{\eta_p^{\Delta_1}},
\]
where
\[\Delta = \min_{(j_1, \ldots, j_n) \in T} \left[\sum_{i=1}^{n} \sigma \left(\frac{q-1}{d_i} j_i \right) - f(p-1) \right]. \]

According to Lemma 2,
\[\sum_{i=1}^{n} \sigma \left(\frac{q-1}{d_i} j_i \right) = S \geq (b + 1) f(p-1). \]

This and (8) together give
\[N - q^{n-1} \equiv 0 \pmod{\eta_p^b f(p-1)}. \]

That is,
\[N - q^{n-1} \equiv 0 \pmod{b}. \]

Clearly, \(b \leq n - 1 \), and so \(N \equiv 0 \pmod{b} \). The proof is complete.

Observing our proof of Lemma 2 and Theorem 1, it is not hard to prove the following better result for equation (1) with \(c = 0 \). That is,

Theorem 3. Let \(b^*(d_1, \ldots, d_n) \) be the least positive integer represented by \(\sum_{i=1}^{n} l_i/d_i \) \((1 \leq l_i \leq d_i - 1)\) if there is such an integer; otherwise, let \(b^*(d_1, \ldots, d_n) = n - 1 \). Then for equation (1) with \(c = 0 \), we have \(N \equiv 0 \pmod{b^*(p-1)} \).

The fact that \(b^* - 1 \geq b \) can be easily proved. Thus, Theorem 3 is in general stronger than Theorem 1.

The above discussion suggests that it would be of interest to determine \(b^*(d_1, \ldots, d_n) \). In an earlier paper, we gave a necessary and sufficient condition for \(b^*(d_1, \ldots, d_n) = n - 1 \) (the maximum value of \(b^* \)); see [9].

The author is grateful to Professor Koblitz, who suggested some comments and corrections.

REFERENCES

5. V. A. Lebesgue, Recherches sur les nombres, J. Math. Pures Appl. **1** (1832), 11-111; **2** (1832), 253-292; **3** (1832), 113-144.
9. Sun Qi and Daqing Wan, On the equation \(\sum_{i=0}^{n} 1/d_i \equiv 0 \pmod{1} \) and its application, Proc. Amer. Math. Soc. **100** (1987), 220-224.

Department of Mathematics, GN-50, University of Washington, Seattle, Washington 98195