Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Convergence and divergence almost everywhere of spherical means for radial functions


Author: Yūichi Kanjin
Journal: Proc. Amer. Math. Soc. 103 (1988), 1063-1069
MSC: Primary 42B25
DOI: https://doi.org/10.1090/S0002-9939-1988-0954984-8
MathSciNet review: 954984
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ d > 1$. It will be shown that the maximal operator $ {S^*}$ of spherical means $ {S_R},R > 0$, is bounded on $ {L^p}({{\mathbf{R}}^d})$ radial functions when $ 2d/(d + 1) < p < 2d/(d - 1)$, and it implies that, for every $ {L^p}({{\mathbf{R}}^d})$ radial function $ f(t),{S_R}f(t)$ converges to $ f(t)$ for a.e. $ t \in {{\mathbf{R}}^d}$ when $ 2d/(d + 1) < p \leq 2$. Also, it will be proved that there is an $ {L^{2d/(d + 1)}}({R^d})$ radial function $ f(t)$ with compact support such that $ {S_R}f(t)$ diverges for a.e. $ t \in {R^d}$.


References [Enhancements On Off] (What's this?)

  • [B] V. M. Badkov, Approximation properties of Fourier series in orthogonal polynomials, Russian Math. Surveys 33 (1978), 53-117. MR 510670 (80c:42010)
  • [C] S. Chanillo, The multiplier for the ball and radial functions, J. Funct. Anal. 55 (1984), 18-24. MR 733030 (85m:42014)
  • [F] C. Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330-336. MR 0296602 (45:5661)
  • [H] C. S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996-999. MR 0063477 (16:127b)
  • [I] S. Igari, On the multipliers of Hankel transform, Tôhoku Math. J. (2) 24 (1972), 201-206. MR 0324332 (48:2684)
  • [KT1] C. E. Kenig and P. A. Tomas, The weak behavior of spherical means, Proc. Amer. Math. Soc. 78 (1980), 48-50. MR 548082 (80k:42021)
  • [KT2] -, Maximal operators defined by Fourier multipliers, Studia Math. 68 (1980), 79-83. MR 583403 (82c:42016)
  • [M] C. Meaney, Divergent Jacobi polynomial series, Proc. Amer. Math. Soc. 87 (1983), 459-462. MR 684639 (84c:42040)
  • [S] C. Sogge, On the convergence of Riesz means on compact manifolds, Ann. of Math. (2) 126 (1987), 439-448. MR 908154 (89b:35126)
  • [ST] R. J. Stanton and P. A. Tomas, Polyhedral summability of Fourier series on compact Lie groups, Amer. J. Math. 100 (1978), 477-493. MR 0622197 (58:29855)
  • [Z] A. Zygmund, Trigonometric series, I and II, Cambridge Univ. Press, London, 1968. MR 0236587 (38:4882)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B25

Retrieve articles in all journals with MSC: 42B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0954984-8
Keywords: Maximal operator of spherical means for radial functions, a.e. convergence, a.e. divergence, transplantation theorem, Hankel transform
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society