Convergence and divergence almost everywhere of spherical means for radial functions

Author:
Yūichi Kanjin

Journal:
Proc. Amer. Math. Soc. **103** (1988), 1063-1069

MSC:
Primary 42B25

DOI:
https://doi.org/10.1090/S0002-9939-1988-0954984-8

MathSciNet review:
954984

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let . It will be shown that the maximal operator of spherical means , is bounded on radial functions when , and it implies that, for every radial function converges to for a.e. when . Also, it will be proved that there is an radial function with compact support such that diverges for a.e. .

**[B]**V. M. Badkov,*Approximation properties of Fourier series in orthogonal polynomials*, Russian Math. Surveys**33**(1978), 53-117. MR**510670 (80c:42010)****[C]**S. Chanillo,*The multiplier for the ball and radial functions*, J. Funct. Anal.**55**(1984), 18-24. MR**733030 (85m:42014)****[F]**C. Fefferman,*The multiplier problem for the ball*, Ann. of Math. (2)**94**(1971), 330-336. MR**0296602 (45:5661)****[H]**C. S. Herz,*On the mean inversion of Fourier and Hankel transforms*, Proc. Nat. Acad. Sci. U.S.A.**40**(1954), 996-999. MR**0063477 (16:127b)****[I]**S. Igari,*On the multipliers of Hankel transform*, Tôhoku Math. J. (2)**24**(1972), 201-206. MR**0324332 (48:2684)****[KT1]**C. E. Kenig and P. A. Tomas,*The weak behavior of spherical means*, Proc. Amer. Math. Soc.**78**(1980), 48-50. MR**548082 (80k:42021)****[KT2]**-,*Maximal operators defined by Fourier multipliers*, Studia Math.**68**(1980), 79-83. MR**583403 (82c:42016)****[M]**C. Meaney,*Divergent Jacobi polynomial series*, Proc. Amer. Math. Soc.**87**(1983), 459-462. MR**684639 (84c:42040)****[S]**C. Sogge,*On the convergence of Riesz means on compact manifolds*, Ann. of Math. (2)**126**(1987), 439-448. MR**908154 (89b:35126)****[ST]**R. J. Stanton and P. A. Tomas,*Polyhedral summability of Fourier series on compact Lie groups*, Amer. J. Math.**100**(1978), 477-493. MR**0622197 (58:29855)****[Z]**A. Zygmund,*Trigonometric series*, I and II, Cambridge Univ. Press, London, 1968. MR**0236587 (38:4882)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
42B25

Retrieve articles in all journals with MSC: 42B25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0954984-8

Keywords:
Maximal operator of spherical means for radial functions,
a.e. convergence,
a.e. divergence,
transplantation theorem,
Hankel transform

Article copyright:
© Copyright 1988
American Mathematical Society