Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Convergence and divergence almost everywhere of spherical means for radial functions

Author: Yūichi Kanjin
Journal: Proc. Amer. Math. Soc. 103 (1988), 1063-1069
MSC: Primary 42B25
MathSciNet review: 954984
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ d > 1$. It will be shown that the maximal operator $ {S^*}$ of spherical means $ {S_R},R > 0$, is bounded on $ {L^p}({{\mathbf{R}}^d})$ radial functions when $ 2d/(d + 1) < p < 2d/(d - 1)$, and it implies that, for every $ {L^p}({{\mathbf{R}}^d})$ radial function $ f(t),{S_R}f(t)$ converges to $ f(t)$ for a.e. $ t \in {{\mathbf{R}}^d}$ when $ 2d/(d + 1) < p \leq 2$. Also, it will be proved that there is an $ {L^{2d/(d + 1)}}({R^d})$ radial function $ f(t)$ with compact support such that $ {S_R}f(t)$ diverges for a.e. $ t \in {R^d}$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B25

Retrieve articles in all journals with MSC: 42B25

Additional Information

PII: S 0002-9939(1988)0954984-8
Keywords: Maximal operator of spherical means for radial functions, a.e. convergence, a.e. divergence, transplantation theorem, Hankel transform
Article copyright: © Copyright 1988 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia