Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An upper bound for the projection constant


Author: D. R. Lewis
Journal: Proc. Amer. Math. Soc. 103 (1988), 1157-1160
MSC: Primary 46B25; Secondary 47A30, 47B10
DOI: https://doi.org/10.1090/S0002-9939-1988-0954999-X
MathSciNet review: 954999
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: There is a positive function $ \delta (n)$ of exponential order such that, for any normed space $ E$ of dimension $ n \geq 2$, the projection constant of $ E$ satisfies $ \lambda (E) \leq {n^{1/2}}[1 - \delta (n)]$.


References [Enhancements On Off] (What's this?)

  • [1] T. Figiel, J. Lindenstrauss and V. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94. MR 0445274 (56:3618)
  • [2] M. Ĭ. Kadec'and M. G. Snobar, Certain functionals on the Minkowski compactum, Mat. Zametki 10 (1971), 453-457= Math. Notes 10 (1971), 694-696. MR 0291770 (45:861)
  • [3] H. König, Spaces with large projection constant, Israel J. Math. 50 (1985), 181-188. MR 793850 (86g:46023)
  • [4] H. König and D. R. Lewis, A strict inequality for projection constants, J. Funct. Anal. 73 (1987), 328-332. MR 904822 (88j:46014)
  • [5] D. R. Lewis, Finite dimensional subspaces of $ {L_p}$, Studia Math. 63 (1978), 207-212. MR 511305 (80b:46043)
  • [6] A. Pietsch, Operator ideals, North-Holland, Amsterdam, 1980. MR 582655 (81j:47001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B25, 47A30, 47B10

Retrieve articles in all journals with MSC: 46B25, 47A30, 47B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0954999-X
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society