Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

An extension theorem for normal functions


Author: Pentti Järvi
Journal: Proc. Amer. Math. Soc. 103 (1988), 1171-1174
MSC: Primary 32H25
DOI: https://doi.org/10.1090/S0002-9939-1988-0955002-8
MathSciNet review: 955002
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a domain $ \Omega \subset {{\mathbf{C}}^n}$, an analytic subvariety $ V$ of $ \Omega $ and a normal function $ f:\Omega \backslash V \to \widehat{\mathbf{C}}$, we show that $ f$ can be extended to a holomorphic mapping $ {f^*}:\Omega \to \widehat{\mathbf{C}}$ provided the singularities of $ V$ are normal crossings.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32H25

Retrieve articles in all journals with MSC: 32H25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0955002-8
Keywords: Normal function, Kobayashi metric
Article copyright: © Copyright 1988 American Mathematical Society