SINGULAR INTEGRALS IN PRODUCT DOMAINS
AND THE METHOD OF ROTATIONS
DONALD KRUG

(Communicated by Richard R. Goldberg)

ABSTRACT. Singular integrals with kernels of the form $K(x, y)$ where K satisfies conditions to be a bounded singular integral operator in each of its variables have been much studied lately. In this paper we use the classical method of rotations to give a proof that kernels of the form $K(x, y) = \frac{\Omega(x, y)}{|x|^n|y|^m}$ correspond to bounded singular integral operators.

The purpose of this paper is to use the method of rotations to give a simple proof that Calderón-Zygmund type operators when generalized to product domains are bounded operators. In particular we consider kernels of the type

$$K(x, y) = \frac{\Omega(x, y)}{|x|^n|y|^m}$$

for $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$ and Ω satisfying certain conditions (which make it a C-Z kernel in each variable.) We are asking if $\|K \ast f\|_p \leq C_p \|f\|_p$.

If $\Omega(x, y) = \Omega_1(x)\Omega_2(y)$ where Ω_1 and Ω_2 correspond to bounded operators on L^p then we can simply iterate one variable methods. In the case above this approach does not work. Kernels $K(x, y)$ not of the form of (1) but satisfying size and smoothness conditions like those of $1/xy$ have been much studied lately (see [2, 3]). The kernels we will study in this paper are less general but can be handled entirely with single variable methods.

Before proceeding I want to thank Alberto Torchinsky for suggesting this approach.

We will proceed to use the method of rotations by studying even and odd kernels.

THEOREM 1. Let $K(x, y) = \frac{\Omega(x, y)}{|x|^n|y|^m}$, Ω odd in both variables, homogeneous of degree zero and $\int_{\Sigma_{n-1}} \int_{\Sigma_{m-1}} |\Omega(x', y')| \, dx' \, dy' < \infty$. (Here Σ_{n-1} denotes the unit sphere in \mathbb{R}^n and $x' = x/|x|$.)

If $T_{e, n}(f)(x, y) = \int_{|s| > \varepsilon} \int_{|t| > \eta} f(x - s, y - t)K(s, t) \, ds \, dt$ then

$$\left\| \sup_{e, \eta} |T_{e, n}(f)| \right\|_p \leq C_p \|f\|_p, \quad 1 < p < \infty.$$

PROOF. Using polar coordinates, let $s = r_1 s', t = r_2 t'$, then

$$K_{e, n} \ast f(x, y) = \int_{\Sigma_{n-1}} \int_{\Sigma_{m-1}} \Omega(s', t') \int_{\varepsilon}^{\infty} \int_{\eta}^{\infty} \frac{f(x - r_1 s', y - r_2 t')}{{r_1 r_2}} \, dr_1 \, dr_2 \, ds' \, dt'$$

$$= - \int_{\Sigma_{n-1}} \int_{\Sigma_{m-1}} \Omega(s', t') \int_{\varepsilon}^{\infty} \int_{\eta}^{\infty} \frac{f(x + r_1 s', y - r_2 t')}{{r_1 r_2}} \, dr_1 \, dr_2 \, ds' \, dt',$$

Received by the editors July 10, 1987.

©1988 American Mathematical Society
0002-9939/88 $1.00 + .25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
since Ω is odd in the first variable. So the above expression equals
\[
\frac{1}{2} \int_{\Sigma_{n-1}} \int_{\Sigma_{m-1}} \Omega(s', t') \\
\times \int_{\eta}^{\infty} \int_{\eta}^{\infty} \frac{f(x - r_1 s', y - r_2 t') - f(x + r_1 s', y - r_2 t')}{r_1 r_2} \, dr_1 \, dr_2 \, ds' \, dt'.
\]
Doing the same in the second variable we obtain
\[
\frac{1}{4} \int_{\Sigma_{n-1}} \int_{\Sigma_{m-1}} \Omega(s', t') \int_{|r_1| > \eta} \int_{|r_2| > \eta} \frac{f(x - r_1 s', y - r_2 t')}{r_1 r_2} \, dr_1 \, dr_2 \, ds' \, dt'.
\]
Let S be the hyperplane perpendicular to s', and T to t'. Let $x = z + \lambda s'$ with $z \in S$, $y = w + \mu t'$ with $w \in T$. Then
\[
\frac{1}{4} \int_{\Sigma_{n-1}} \int_{\Sigma_{m-1}} \Omega(s', t') \\
\times \int_{|r_1| > \eta} \int_{|r_2| > \eta} \frac{f(z + (\lambda - \mu) s', w + (\mu - \eta) t')}{r_2} \, dr_1 \, ds' \, dt'.
\]
So
\[
\left\| \sup_{\epsilon, \eta} |T_{\epsilon, \eta}(f)| \right\|_p \leq \int_{\Sigma_{n-1}} \int_{\Sigma_{m-1}} |\Omega(s', t')| \\
\times \left(\int_{T} \int_{S} \int_{R} \sup_{\epsilon > 0} \int_{|r_1| > \eta} \frac{1}{r_1} \right) \\
\times \left(\sup_{\eta > 0} \int_{|r_2| > \eta} \frac{f(z + (\lambda - \mu) s', w + (\mu - \eta) t')}{r_2} \, dr_2 \bigg| \, dr_1 \bigg| d\lambda \, d\mu \, dw \, dz \right)^{1/p} \, ds' \, dt' \\
\leq \frac{C_p}{4} \int_{\Sigma_{n-1}} \int_{\Sigma_{m-1}} |\Omega(s', t')| \, ds' \, dt' \|f\|_p \leq C_p \|f\|_p,
\]
using the boundedness of the Maximal Hilbert transform twice. □

Exploiting this method we can in fact obtain

Theorem 2. Let $K(x, y) = \Omega(x', y')/|x|^m|y|^m$, where Ω is odd in the x'-variable. Let $K_x(y) = K(x, y)$ and $T_{x, y}^e(f)(y) = \int_{|t| > \eta} f(x, y - t)K_x(t) \, dt$. If
\[
(*) \quad \| \sup_{\epsilon, \eta} |T_{x, y}^e(f)| \|_p \leq C_p \|f\|_p,
\]
C_p independent of x (i.e., K is a bounded C-Z kernel in y independent of x), then
\[
\left\| \sup_{\epsilon, \eta} |T_{x, y}^e(f)| \right\|_p \leq C_p \|f\|_p.
\]

Proof. Proceeding as above, but in the x-variable only,
\[
K_{x, y} \ast f(x, y) = \frac{1}{2} \int_{\Sigma_{n-1}} \int_{|t| > \eta} \frac{\Omega(s', t)}{|t|^m} \int_{|r| > \epsilon} \frac{f(x - rs', y - t)}{r} \, dr \, dt \, ds'.
\]
Let \(x = z + \lambda s' \), \(x \in S \), where \(S \) is perpendicular to \(s' \),
\[
\frac{1}{2} \int_{\Sigma_{n-1}} \int_{|t|>\eta} \frac{\Omega(s', t)}{|t|^m} \int_{|r|>\epsilon} f(z - (\lambda - r)s', y - t) \frac{dr}{r} dt ds'.
\]
So
\[
\left\| \sup_{\epsilon, \eta} |T_{\epsilon, \eta}| \right\|_p
\leq \frac{1}{2} \int_{\Sigma_{n-1}} \left(\int_S \int_{R^m} \sup_{\eta>0} \int_{|t|>\eta} \frac{\Omega(s', t)}{t} \right) \left(\int_{|r|>\epsilon} f(z - (\lambda - r)s', y - t) \frac{dr}{r} dt \right)^p dy d\lambda dz ds'.
\]
Now using the assumption (*), that our operator is bounded as an operator acting only in the second variable, we have
\[
\leq C_p \int_{\Sigma_{n-1}} \left(\int_S \int_{R^m} \sup_{\epsilon>0} \left(\int_{|r|>\epsilon} f(z, y) \frac{dr}{r} \right)^p dy d\lambda dz \right)^{1/p} ds'.
\]

THEOREM 3. Again let \(K(x, y) = \Omega(x, y)/|x|^n|y|^m \), \(\Omega \) homogeneous of degree zero in each variable, \(\int_{\Sigma_{n-1}} \Omega(s, t) ds = 0 \) a.e. in \(t \), \(\int_{\Sigma_{n-1}} \Omega(s, t) dt = 0 \) a.e. in \(s \), \((\int_{\Sigma_{n-1}} |\Omega(s, t)|^2 ds)^{1/2} < C \) independent of \(t \), and \((\int_{\Sigma_{n-1}} |\Omega(s, t)|^2 dt)^{1/2} < C \) independent of \(s \). Then \(\| K * f \|_p \leq C_p \| f \|_p \).

PROOF. We may assume \(\Omega \) is even in both variables (since the hypotheses assure that both the previous theorems hold) and that \(f = \rho \), a testing function. Let \(y \) be fixed, \(K_y(x) = \Omega(x', y')/|x|^n \), \(T_y(\rho) = K_y * \rho \) and \(R_i \) be the \(i \)th Riesz Transformation in \(y \). Then [4, p. 225] shows that \(R_i T_y \) is essentially an odd C-Z operator. In fact, it is shown that \((R_i T_y)^\sim = (J_i^y)^\sim \) where \(J_i^y(x) = \omega_i(x')/|x|^n \), \(\omega \in L^2(\Sigma_{n-1}, dx) \) and \(\omega_y(x) \) is odd in \(x \).

If we set
\[
J_i(x, y) = \frac{J_i^y(x)}{|y|^m} = \frac{\omega(x', y')}{|x|^n|y|^m}, \quad \text{where } \omega(x', y') = \omega_y(x'),
\]
then \(J_i \) is an odd C-Z integral operator in the \(x \)-variable.

In the \(y \)-variable we see that \(J_i \) is a C-Z operator (as expected) since
\[
[(R_j T)\rho]^\sim = -i \frac{x_j}{|x|} \Omega_0 \left(\frac{x}{|x|}, \frac{y}{|y|} \right) \hat{\rho}
\]
where \(\Omega_0 = \hat{K} \) (see [4]). In the \(y \)-variable this acts exactly as did \(K * \rho \) (up to a constant \(C_z \), \(|C_z| < 1 \)) and so is still a C-Z operator.

So by Theorem 2 above, \(\| J_i * \rho \|_p \leq C \| \rho \|_p \).

It follows that
\[
\| K * \rho \|_p = \| R_i * J_i * \rho \|_p \leq \sum \| R_i * (J_i * \rho) \|_p \leq C \| \rho \|_p.
\]
There is a weighted version of this as well.

For one variable $x \in \mathbb{R}^n$, a function $w(x) > 0$ is called an A_p-weight, $1 < p < \infty$, if it satisfies

$$
\frac{1}{|Q|} \int_Q w(x) \, dx \left(\frac{1}{|Q|} \int_Q [w(x)]^{-(p-1)/p} \, dx \right)^{p-1} \leq B,
$$

for some $B < \infty$ and all cubes Q in \mathbb{R}^n.

The following theorem is well known.

THEOREM. If w is an A_p-weight and K is a standard C-Z kernel then

$$
\int_{\mathbb{R}^n} |f * K(y)|^p w(y) \, dy \leq C(p, B) \int_{\mathbb{R}^n} |f(y)|^p w(y) \, dy.
$$

See [1] for results on weights.

In the work above we used only that $T = K * f$ was bounded in L^p-norm in each variable separately. Thus if $w(x, y)$ is an A_p-weight in each variable, i.e., if $w(x, y) > 0$, $x \rightarrow w(x, y)$ is an A_p-weight with B independent of y and similarly for $y \rightarrow w(x, y)$ then following the method of proof above we have the following.

THEOREM 4. If w is as above and K satisfies the conditions of Theorem 3 then

$$
\left(\int_{\mathbb{R}^n \times \mathbb{R}^m} |K * f(y)|^p w(y) \, dy \right)^{1/p} \leq C(p, A) \left(\int_{\mathbb{R}^n \times \mathbb{R}^m} |f(y)|^p w(y) \, dy \right)^{1/p}.
$$

REFERENCES

Department of Mathematical Sciences, Northern Kentucky University, Highland Heights, Kentucky 41076