Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An extension of the closed unbounded filter


Author: Robert J. Mignone
Journal: Proc. Amer. Math. Soc. 103 (1988), 1221-1225
MSC: Primary 04A20
DOI: https://doi.org/10.1090/S0002-9939-1988-0955014-4
MathSciNet review: 955014
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A natural extension of the closed unbounded filter is introduced. This extension coincides with the closed unbounded filter on uncountable, regular cardinals $ \kappa $, but in general does not for $ {P_k}\lambda $ and $ {\left[ \lambda \right]^\kappa }$.


References [Enhancements On Off] (What's this?)

  • [1] J. B. Barbanel, C. A. DiPrisco and I. B. Tan, Many-times huge and supercompact cardinals, J. Symbolic Logic 49 (1984), 177-187.
  • [2] C. A. DiPrisco and W. Marek, A filter on $ {\left[ \lambda \right]^\kappa }$, Proc. Amer. Math. Soc. 90 (1984), 591-598. MR 733412 (85g:03072)
  • [3] T. J. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1973), 165-198. MR 0325397 (48:3744)
  • [4] -, Set theory, Academic Press, New York, 1978. MR 506523 (80a:03062)
  • [5] M. Magidor, Combinatorial characterizations of supercompact cardinals, Proc. Amer. Math. Soc. 42 (1974), 279-285. MR 0327518 (48:5860)
  • [6] R. J. Mignone, The ultrafilter characterization of huge cardinals, Proc. Amer. Math. Soc. 90 (1984), 585-590. MR 733411 (85e:03124)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 04A20

Retrieve articles in all journals with MSC: 04A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0955014-4
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society