CONGRUENCE AND ONE-DIMENSIONALITY OF METRIC SPACES

LUDVIK JANOS

(Communicated by Dennis Burke)

ABSTRACT. Two subsets A and B of a metric space (X, d) are said to be congruent if there is a bijection between them which preserves the distance d. We show that if a separable locally compact metric space is such that no distinct subsets of cardinality 3 are congruent then its dimension is ≤ 1. We also show that the real line \mathbb{R} can be given a compatible metric with this property.

1. Introduction. We say that two subsets A, B of a metric space (X, d) are congruent if there exists a bijection between them which preserves the distance d. Using the notion of congruence our previous result [2] says that a nonempty separable metrizable space is zero-dimensional if and only if it admits a metric relative to which no two distinct sets of cardinality 2 are congruent. Our objective in this note is to explore the case where the cardinality of the sets mentioned above is 3. We prove

THEOREM 1. If X is a locally compact separable metric space having a metric d such that no two distinct subsets of X of cardinality 3 are congruent relative to d, then $\dim(A) < 1$.

THEOREM 2. The real line \mathbb{R} can be given a compatible metric d so that (\mathbb{R}, d) contains no two distinct congruent subsets of cardinality 3.

2. Proof of the theorems. If $x_1, x_2 \in X$ are two distinct points of a metric space (X, d) we denote by $B(x_1, x_2)$ the bisector set defined as $\{y : y \in X$ and $d(x_1, y) = d(x_2, y)\}$ (cf. [3, 4, or 5]).

LEMMA 2.1. Let X be a separable metrizable space. Then, $\dim(X) < n$ if and only if X has an admissible totally bounded metric d such that if B is a d-bisector set in X then $\dim(B) < n - 1$.

PROOF. This is Theorem 1 of [4].

As a corollary to this lemma we prove

LEMMA 2.2. Let (X, d) be a totally bounded metric space containing no two distinct congruent sets of cardinality 3. Then $\dim(X) \leq 1$.

PROOF. If X is empty or if it contains only one point then $\dim(X) \leq 0$. So assume X contains at least two points and let $B = B(x_1, x_2)$ be a bisector set of...
We observe that the set B cannot contain more than one point since if $y_1, y_2 \in B$ were two distinct points then \{(x_1, y_1, y_2) and (x_2, y_1, y_2)\} would be two distinct congruent sets of cardinality 3 which is contrary to our hypothesis. Thus we have that $\dim(B) \leq 0$ for every bisector set of X and Lemma 2.1 implies that $\dim(X) \leq 1$ which was to be proved.

The proof of our Theorem 1 now follows as a corollary to Lemma 2.2. Since (X, d) is a locally compact separable metric space each point $x \in X$ is contained in a precompact open subset $U \subseteq X$ so that the restriction of d to U is totally bounded. Since the dimension is a local property we conclude that $\dim(X) \leq 1$.

To prove our Theorem 2 we need some notation. We denote by \mathbb{R}^2 the Euclidean plane with the usual Euclidean metric on it. Let I denote the group of all orientation preserving isometries of \mathbb{R}^2, i.e., the proper motions and let I^* be the group of all isometries of \mathbb{R}^2 including reflections. Let P denote the graph $\{(x, x^2) : x \in \mathbb{R}\}$ of the parabola $y = x^2$ in \mathbb{R}^2 and let $P^+ \subseteq \mathbb{R}^2$ denote the following subset of it: \{(x, x^2) : x > 0\}. We observe that P^+ is homeomorphic to \mathbb{R} and we shall prove that it has the desired property relative to the Euclidean metric of \mathbb{R}^2.

Lemma 2.3. Let $\{A_1, A_2, A_3\}$ and $\{B_1, B_2, B_3\}$ be two distinct subsets of P^+ of cardinality 3. Then these sets cannot be congruent.

Proof. We give an indirect proof, assuming they are congruent. Then, as we know (cf. [1]) the isometry between $\{A_1, A_2, A_3\}$ and $\{B_1, B_2, B_3\}$ extends uniquely to an element $T \in I^*$. Now we distinguish two cases: Case (1) where T is a proper motion. Let the points $A_i = (x_i, x_i^2)$ and $B_j(y_j, y_j^2)$ be indexed so that for their first coordinates x_i and y_j we have $0 < x_1 < x_2 < x_3$ and $0 < y_1 < y_2 < y_3$ respectively. Then, since T is order-preserving we have: $B_i = TA_i$ for $i = 1, 2, 3$. Without loss of generality we may assume $x_1 \leq y_1$ from which one easily deduces that $x_2 \leq y_2$ and $x_3 \leq y_3$. An elementary computation shows that the negatively taken tangent of the angle at the vertex A_2 of the triangle $\{A_1, A_2, A_3\}$ equals

$$a_{13}[1 + (x_1 + x_2)(x_2 + x_3)(1 + x_1^2 + 2x_1x_3 + x_3^2)]^{-1}$$

where $a_{13} = [(x_3 - x_1)^2 + (x_3^2 - x_1^2)^2]^{1/2}$ is the distance between A_1 and A_3. Since both of these quantities are preserved under T we obtain the equality

$$1 + (x_1 + x_2)(x_2 + x_3)(1 + x_1^2 + 2x_1x_3 + x_3^2) = 1 + (y_1 + y_2)(y_2 + y_3)(1 + y_1^2 + 2y_1y_3 + y_3^2).$$

But since the expression on the left is an increasing function of x_1, x_2 and x_3 and since $y_1 \geq x_1, y_2 \geq x_2, y_3 \geq x_3$ the equality would imply $x_i = y_i$ for $i = 1, 2, 3$, which is impossible since the sets $\{A_1, A_2, A_3\}$ and $\{B_1, B_2, B_3\}$ are distinct. So it remains to investigate Case (2), where T is a reflection. Let L be the line in \mathbb{R}^2 which is pointwise invariant under T. We observe that the set $\{A_1, A_2, A_3, B_1, B_2, B_3\}$ has cardinality at least 4 and that it is contained in the intersection $P^+ \cap TP^+$. We also observe that the line L would intersect the parabola P in two points C_1, C_2 where $C_1 \in P^+$ and $C_2 \notin P^+$. Thus, the set $\{A_1, A_2, A_3, B_1, B_2, B_3, C_2\}$ with cardinality at least 5 would be in the intersection $P \cap TP$ which contradicts the fact that two quadratic curves have at most 4 common points. So we arrived at the desired contradiction in both cases which concludes the proof of our lemma.

Identifying the line \mathbb{R} with the set P^+ and taking for d the restriction of the Euclidean metric of \mathbb{R}^2 to P^+ we obtain the proof of our Theorem 2.
REMARK. The fact that \(\mathbb{R} \) can be remetrized in such a manner that no two distinct sets of cardinality 3 are congruent supports our belief that also the converse of Theorem 1 is true, namely that if a separable metrizable space has dimension \(\leq 1 \) then it has a metric with this property. One way to show it would be to prove that the universal 1-dimensional subset of \(\mathbb{R}^3 \), the Sierpiński cube, has such a metric. In [3] is shown that there exists a subset of \(\mathbb{R} \) containing no two distinct congruent subsets of cardinality 2 which is homeomorphic to the Cantor set \(C \). We conjecture that there exists a set \(S^* \subseteq \mathbb{R}^3 \) homeomorphic to the Sierpiński set \(S \) such that for every nonidentical isometry \(T \) of \(\mathbb{R}^3 \) the cardinality of the intersection \(S^* \cap TS^* \) is at most 2 if \(T \) is a proper motion and at most 3 if it is a reflexion. This would imply that the set \(S^* \) contains no two distinct congruent subsets of cardinality 3.

REFERENCES

1. L. M. Blumenthal, Theory and applications of distance geometry, Oxford Univ. Press, 1953.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, CALIFORNIA STATE UNIVERSITY, LONG BEACH, CALIFORNIA 90840