Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fixed point sets of homeomorphisms of metric products


Author: John R. Martin
Journal: Proc. Amer. Math. Soc. 103 (1988), 1293-1298
MSC: Primary 55M20; Secondary 54H25, 57M25, 57N99
DOI: https://doi.org/10.1090/S0002-9939-1988-0955025-9
MathSciNet review: 955025
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper it is investigated as to when a nonempty closed subset $ A$ of a metric product $ X$ containing intervals or spheres as factors can be the fixed point set of an autohomeomorphism of $ X$. It is shown that if $ X$ is the Hilbert cube $ Q$ or contains either the real line $ R$ or a $ (2n - 1)$-sphere $ {S^{2n - 1}}$ as a factor, then $ A$ can be any nonempty closed subset. In the case where $ A$ is in $ \operatorname{Int}({B^{2n + 1}}{\text{)}}$, the interior of the closed unit $ (2n + 1) - {\text{ball }}{B^{2n + 1}},$, a strong necessary condition is given. In particular, for $ {B^3},A$ can neither be a nonamphicheiral knot nor a standard closed or nonplanar bordered surface.


References [Enhancements On Off] (What's this?)

  • [1] T. A. Chapman, Lectures on Hilbert cube manifolds, CBMS Regional Conf. Ser. in Math., no. 28, Amer. Math. Soc., Providence, R. I., 1976. MR 0423357 (54:11336)
  • [2] R. H. Crowell and R. H. Fox, Introduction to knot theory, Ginn, Boston, Mass., 1963; Springer-Verlag, New York, 1977. MR 0445489 (56:3829)
  • [3] J. R. Martin and W. A. R. Weiss, Fixed point sets of metric and nonmetric spaces, Trans. Amer. Math. Soc. 284 (1984), 337-353. MR 742428 (85h:54085)
  • [4] W. S. Massey, Algebraic topology: An introduction, Harcourt, Brace and World, 1967; Springer-Verlag, Berlin and New York, 1977. MR 0448331 (56:6638)
  • [5] D. Rolfsen, Knots and links, Math. Lecture Series 7, Publish or Perish, Berkeley, Calif., 1976. MR 0515288 (58:24236)
  • [6] H. Schirmer, On fixed point sets of homeomorphisms of the $ n$-ball, Israel J. Math. 7 (1969), 46-50. MR 0246286 (39:7590)
  • [7] -, Fixed point sets of homeomorphisms of compact surfaces, Israel J. Math. 10 (1971), 373-378. MR 0298647 (45:7699)
  • [8] -, Fixed point sets of continuous selfmaps, Fixed Point Theory Proc. (Sherbrooke, 1980), Lecture Notes in Math., vol. 866, Springer-Verlag, Berlin, 1981, pp. 417-428.
  • [9] L. E. Ward, Jr., Fixed point sets, Pacific J. Math. 47 (1973), 553-565. MR 0367963 (51:4205)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55M20, 54H25, 57M25, 57N99

Retrieve articles in all journals with MSC: 55M20, 54H25, 57M25, 57N99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0955025-9
Keywords: Fixed point set, orientation preserving (reversing) autohomeomorphism, Hilbert cube, knot, closed surface, bordered surface
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society