Absolute endpoints of chainable continua

Author:
Ira Rosenholtz

Journal:
Proc. Amer. Math. Soc. **103** (1988), 1305-1314

MSC:
Primary 54F15; Secondary 54D05, 54F20, 54F50

MathSciNet review:
955027

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An endpoint of chainable continuum is a point at which it is always possible to start chaining that continuum. Some endpoints appear to have the property that one is almost "forced" to start (or finish) the chaining at these points. This paper characterizes these "absolute endpoints", and this characterization is used to show that in a chainable continuum locally connected at is equivalent to connected im kleinen at .

**[1]**Lida K. Barrett,*The structure of decomposable snakelike continua*, Duke Math. J.**28**(1961), 515–522. MR**0133114****[2]**R. H. Bing,*A homogeneous indecomposable plane continuum*, Duke Math. J.**15**(1948), 729–742. MR**0027144****[3]**R. H. Bing,*Concerning hereditarily indecomposable continua*, Pacific J. Math.**1**(1951), 43–51. MR**0043451****[4]**R. H. Bing,*Snake-like continua*, Duke Math. J.**18**(1951), 653–663. MR**0043450****[5]**John G. Hocking and Gail S. Young,*Topology*, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961. MR**0125557****[6]**Edwin E. Moise,*An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua*, Trans. Amer. Math. Soc.**63**(1948), 581–594. MR**0025733**, 10.1090/S0002-9947-1948-0025733-4**[7]**Gordon Thomas Whyburn,*Analytic Topology*, American Mathematical Society Colloquium Publications, v. 28, American Mathematical Society, New York, 1942. MR**0007095**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54F15,
54D05,
54F20,
54F50

Retrieve articles in all journals with MSC: 54F15, 54D05, 54F20, 54F50

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1988-0955027-2

Keywords:
Chainable continua,
endpoints,
connectedness im kleinen,
local connectedness

Article copyright:
© Copyright 1988
American Mathematical Society