NEIGHBORHOODS OF POINTS IN CODIMENSION-ONE SUBMANIFOLDS LIE IN CODIMENSION-ONE SPHERES

FREDERIC D. ANCEL

(Communicated by Doug W. Curtis)

ABSTRACT. For \(n \geq 4 \), let \(M \) be an \((n-1) \)-manifold embedded in an \(n \)-
manifold \(N \). For each point \(p \) of \(M \), there is an \((n-1) \)-sphere \(\Sigma \) in \(N \) such
that \(\Sigma \cap M \) is a neighborhood of \(p \) in \(M \).

We work in the category of topological manifolds without boundary and topological embeddings.

The \(n = 3 \) case of this result is established by Theorem 5 of [2]. A weak version
of this result for \(n \geq 5 \) is found in Theorem 5B.10 of [3]. This particular proof
arose in response to a private query from D. L. Loveland of Utah State University.

This type of result is used to generalize theorems concerning local properties of
wild codimension-one spheres into theorems about arbitrary wild codimension-one
submanifolds. One application is found in Theorem 6 of [2]. Another application
is discussed on pages 38 and 39 of [1].

PROOF. Without loss of generality, we can cut \(M \) and \(A \) down to assure that
both are orientable. This makes any embedding of \(M \) in \(A \) 2-sided. Now, for an
open subset \(V \) of \(M \), an embedding \(e: V \to A \) is tame if there is an embedding
\(E: V \times \mathbb{R} \to A \) such that \(E(x, 0) = e(x) \) for each \(x \in V \); the embedding \(E \) is called
a collar of \(e \).

Let \(\{U_i : i \geq 0\} \) be a decreasing sequence of open neighborhoods of \(p \) in \(N \) with
diameters converging to zero. Let \(\{D_i: i \geq 0\} \) be a sequence of \((n-1) \)-balls in \(M \)
such that for each \(i \geq 0 \), \(\{p\} \cup D_{i+1} \subset \text{int}(D_i) \) and \(D_i \subset U_i \). For \(0 \leq i < j < \infty \),
let \(A(i,j) = (\text{int}(D_i)) - D_j \) and let \(A(i, \infty) = (\text{int}(D_i)) - \{p\} \).

Let \(\varepsilon_0: M \to N \) denote the given inclusion. Repeated applications of Theorem
2.2 of [1] yields a sequence of embeddings \(\varepsilon_i: M \to N \) which, for each \(i \geq 1 \), satisfy
the following three conditions.

1. \(\varepsilon_i = \varepsilon_{i-1} \) on \(M - A(i-1, i+1) \).
2. \(\varepsilon_i|\text{int}(A(0, i+1)) \) is tame.
3. \(\varepsilon_i(D_j) \subset U_j \) for each \(j \geq 0 \).

It follows that the sequence \(\{\varepsilon_i\} \) converges to an embedding \(f: M \to N \) such
that for each \(i \geq 0 \), \(f = \varepsilon_i \) on \(M - A(i, \infty) \). Consequently, \(f|A(0, \infty) \) is tame.

According to [4], \(f \) cannot have isolated wild points. Hence, \(f|\text{int}(D_0) \) is, in
fact, tame. Thus, \(f|\text{int}(D_0) \) has a collar, which we use to slide \(f \) to an embedding
\(g: M \to N \) such that \(g(\text{int}(D_0)) \cap f(\text{int}(D_0)) = \emptyset \) and \(g = f \) on \(M - \text{int}(D_0) \).

As \(p = f(p) \in f(\text{int}(D_0)) \), there is an \(i \geq 0 \) such that \(g(D) \cap U_i = \emptyset \). Since
\(e_i(D_i) \subset U_i \) and \(e_i = f \) on \(M - \text{int}(D_i) \), then \(e_i(\text{int}(D_0)) \cap g(\text{int}(D_0)) = \emptyset \) and

Received by the editors July 27, 1987.
1980 Mathematics Subject Classification (1985 Revision). Primary 57N35, 57N45.

©1988 American Mathematical Society
0002-9939/88 $1.00 +$.25 per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

1315
$e_i = g$ on ∂D_0. So $\Sigma = e_i(D_0) \cup g(D_0)$ is an $(n - 1)$-sphere. Since $e_i = e_0$ on D_{i+1}, then $D_{i+1} \subset \Sigma \cap M$. □

REFERENCES