Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


The integrability of generalized Garrett-Stanojević sums

Authors: Niranjan Singh and K. M. Sharma
Journal: Proc. Amer. Math. Soc. 104 (1988), 135-144
MSC: Primary 42A20; Secondary 42A24
MathSciNet review: 929424
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we have defined the generalized Garrett-Stanojević cosine sums

$\displaystyle {h_n}\left( x \right) = \sum\limits_{p = 0}^n {S_p^{r - 1}{\Delta ^r}{a_p}} $

and have proved that under suitable conditions $ {h_n} \to h$ in the $ {L^1}$-norm, where $ h\left( x \right) = {a_0}/2 + \sum\nolimits_{n = 1}^\infty {{a_n}\cos nx} $. If $ r = 1$, then $ {h_n}\left( x \right)$ reduces to the modified cosine sums introduced by Rees and Stanojević.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A20, 42A24

Retrieve articles in all journals with MSC: 42A20, 42A24

Additional Information

PII: S 0002-9939(1988)0929424-5
Keywords: Cesàro means, $ {L^1}$-convergence, generalized cosine sums
Article copyright: © Copyright 1988 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia