Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The integrability of generalized Garrett-Stanojević sums


Authors: Niranjan Singh and K. M. Sharma
Journal: Proc. Amer. Math. Soc. 104 (1988), 135-144
MSC: Primary 42A20; Secondary 42A24
DOI: https://doi.org/10.1090/S0002-9939-1988-0929424-5
MathSciNet review: 929424
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we have defined the generalized Garrett-Stanojević cosine sums

$\displaystyle {h_n}\left( x \right) = \sum\limits_{p = 0}^n {S_p^{r - 1}{\Delta ^r}{a_p}} $

and have proved that under suitable conditions $ {h_n} \to h$ in the $ {L^1}$-norm, where $ h\left( x \right) = {a_0}/2 + \sum\nolimits_{n = 1}^\infty {{a_n}\cos nx} $. If $ r = 1$, then $ {h_n}\left( x \right)$ reduces to the modified cosine sums introduced by Rees and Stanojević.

References [Enhancements On Off] (What's this?)

  • [1] A. N. Kolmogorov, Sur l'ordre de grandeur des coefficients de la série de Fourier-Lebesgue, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. (1923), 83-86.
  • [2] C. N. Moore, On the use of Cesàro means in determining criteria for Fourier constants, Presented to the Society and Section A of the American Association for the Advancement of Science, by invitation, June 21, 1933, on the occasion of an address by Professor L. Fejér.
  • [3] A. Zygmund, Trigonometric series, Volume 1, Cambridge at the University Press, 1959. MR 0107776 (21:6498)
  • [4] L. S. Bosanquet, Note on convergence and summability factors. III, Proc. London Math. Soc. (2) 50 (1949), 482-495. MR 0027872 (10:368c)
  • [5] A. F. Andersen, On extensions within the theory of Cesàro summability of a classical convergence theorem of Dedekind, Proc. London Math. Soc. (3) 8 (1958), 1-52. MR 0092880 (19:1173j)
  • [6] C. S. Rees and Č. V. Stanojević, Necessary and sufficient conditions for integrability of certain cosine sums, 3. Math. Anal. Appl. 43 (1973), 579-586. MR 0322432 (48:794)
  • [7] J. W. Garrett and Č. V. Stanojević, On integrability and $ {L^1}$-convergence of certain cosine sums, Notices Amer. Math. Soc. 22 (1975), A-166.
  • [8] -, Necessary and sufficient conditions for $ {L^1}$-convergence of trigonometric series, Proc. Amer. Math. Soc. 60 (1976), 68-71. MR 0425480 (54:13435)
  • [9] Niranjan Singh and K. M. Sharma, $ {L^1}$-convergence of modified cosine sums with generalized quasiconvex coefficients, J. Math. Anal. Appl. (to appear). MR 972593 (90g:42013)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A20, 42A24

Retrieve articles in all journals with MSC: 42A20, 42A24


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0929424-5
Keywords: Cesàro means, $ {L^1}$-convergence, generalized cosine sums
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society