Gaps between prime numbers

Authors:
Adolf Hildebrand and Helmut Maier

Journal:
Proc. Amer. Math. Soc. **104** (1988), 1-9

MSC:
Primary 11N05

DOI:
https://doi.org/10.1090/S0002-9939-1988-0958032-5

MathSciNet review:
958032

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the th gap in the sequence of primes. We show that for every fixed integer and sufficiently large the set of limit points of the sequence in the cube has Lebesgue measure , where is a positive constant depending only on . This generalizes a result of Ricci and answers a question of Erdös, who had asked to prove that the sequence has a finite limit point greater than 1.

**[1]**P. Erdös,*On the difference between consecutive primes*, Quart. J. Oxford**6**(1935), 124-128.**[2]**P. Erdös,*Problems and results on the differences of consecutive primes*, Publ. Math. Debrecen**1**(1949), 33–37. MR**0030994****[3]**P. X. Gallagher,*A large sieve density estimate near 𝜎=1*, Invent. Math.**11**(1970), 329–339. MR**0279049**, https://doi.org/10.1007/BF01403187**[4]**H. Halberstam and H.-E. Richert,*Sieve methods*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York, 1974. London Mathematical Society Monographs, No. 4. MR**0424730****[5]**Helmut Maier,*Chains of large gaps between consecutive primes*, Adv. in Math.**39**(1981), no. 3, 257–269. MR**614163**, https://doi.org/10.1016/0001-8708(81)90003-7**[6]**-,*Small differences between prime numbers*, Preprint.**[7]**R. A. Rankin,*The difference between consecutive prime numbers*, J. London Math. Soc.**13**(1938), 242-247.**[8]**Giovanni Ricci,*Recherches sur l’allure de la suite {𝑝_{𝑛+1}-𝑝_{𝑛}/log𝑝_{𝑛}}*, Colloque sur la Théorie des Nombres, Bruxelles, 1955, Georges Thone, Liège; Masson and Cie, Paris, 1956, pp. 93–106 (French). MR**0079605****[9]**E. Westzynthius,*Über die Verteilung der Zahlen, die zu den n ersten Primzahlen teilerfremd sind*, Comm. Phys. Math. Helsingfors**25**(1931), 1-37.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11N05

Retrieve articles in all journals with MSC: 11N05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0958032-5

Article copyright:
© Copyright 1988
American Mathematical Society