Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Elliptic curves with no rational points


Authors: Jin Nakagawa and Kuniaki Horie
Journal: Proc. Amer. Math. Soc. 104 (1988), 20-24
MSC: Primary 11R45; Secondary 11D25, 11G05, 11R11, 14G25
DOI: https://doi.org/10.1090/S0002-9939-1988-0958035-0
MathSciNet review: 958035
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The existence of infinitely many elliptic curves with no rational points except the origin $ \infty $ is proved by refining a theorem of Davenport-Heilbronn. The existence of infinitely many quadratic fields with the Iwasawa invariant $ {\lambda _3} = 0$ is proved at the same time.


References [Enhancements On Off] (What's this?)

  • [1] A. Aigner, Über die Möglichkeit von $ {x^4} + {y^4} = {z^4}$ in quadratischen Körpern, Jber. Deutsch. Math. Verein. 43 (1934), 226-229.
  • [2] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), 223-251. MR 0463176 (57:3134)
  • [3] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields, Bull. London Math. Soc. 1 (1969), 345-348. MR 0254010 (40:7223)
  • [4] -, On the density of discriminants of cubic fields. II, Proc. Roy. Soc. London Ser. A 322 (1971), 405-420. MR 0491593 (58:10816)
  • [5] R. Fueter, Die Diophantische Gleichung $ {\xi ^3} + {\eta ^3} + {\varsigma ^3} = 0$, Sitzungsberichte Heidelberg Akad. Wiss. 25. Abh. (1913), 25 pp.
  • [6] -, Über kubische diophantische Gleichungen, Comment. Math. Helv. 2 (1930), 69-89. MR 1509405
  • [7] B. Gross and D. Rohrlich, Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Invent. Math. 44 (1978), 201-220. MR 0491708 (58:10911)
  • [8] P. Hartung, Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by 3, J. Number Theory 6 (1974), 276-278. MR 0352040 (50:4528)
  • [9] K. Horie, A note on basic Iwasawa $ \lambda $-invariants of imaginary quadratic fields, Invent. Math. 88 (1987), 31-38. MR 877004 (88i:11073)
  • [10] L. J. Mordell, Diophantine equations, Academic Press, New York, 1969. MR 0249355 (40:2600)
  • [11] T. Nagell, Sur la résolubilite de l'équation $ {x^2} + {y^2} + {z^2} = 0$ dans un corps quadratique, Acta Arith. 21 (1972), 35-43. MR 0302558 (46:1702)
  • [12] J. L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. 60 (1981), 375-484. MR 646366 (83h:10061)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11R45, 11D25, 11G05, 11R11, 14G25

Retrieve articles in all journals with MSC: 11R45, 11D25, 11G05, 11R11, 14G25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0958035-0
Keywords: Elliptic curve, rational point, Iwasawa invariant, class number
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society