Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A characterization of Artinian rings whose endomorphism rings have finite global dimension

Author: Dan Zacharia
Journal: Proc. Amer. Math. Soc. 104 (1988), 37-38
MSC: Primary 16A35; Secondary 16A60
MathSciNet review: 958038
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $ \Lambda $ is a left artinian ring having the property that for every idempotent $ e$, the ring $ e\Lambda e$ has finite global dimension then $ \Lambda $ is a quotient of an hereditary artinian ring.

References [Enhancements On Off] (What's this?)

  • [1] Edward L. Green, Remarks on projective resolutions, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979) Lecture Notes in Math., vol. 832, Springer, Berlin, 1980, pp. 259–279. MR 607158
  • [2] J. P. Jans and Tadasi Nakayama, On the dimension of modules and algebras. VII. Algebras with finite-dimensional residue-algebras, Nagoya Math. J. 11 (1957), 67–76. MR 0086824

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A35, 16A60

Retrieve articles in all journals with MSC: 16A35, 16A60

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society