THE ISOMORPHISM QUESTION FOR MODULAR GROUP ALGEBRAS OF METACYCLIC p-GROUPS

CZESŁAW BAGIŃSKI

(Communicated by Donald S. Passman)

ABSTRACT. Let $F[G]$ be a group algebra of a finite p-group G over the field $F = GF(p)$. If $G \cong H$, then clearly $F[G] \cong F[H]$. However, it is not known whether the converse is true. The answer for metacyclic p-groups, $p > 3$, is given.

Let p be a prime, G—a finite nonabelian p-group and $F = GF(p)$—the field with p elements. In this note we study the following isomorphism problem: Whether the isomorphism of group algebras $F[G]$ and $F[H]$ implies the isomorphism of groups G and H. In [4] it was given the positive answer to this question for all p-groups of order at most p^4. Here we prove the following

THEOREM. If G is a metacyclic p-group, $p > 3$, and $F[G] \cong F[H]$, then $G \cong H$.

Our result depends on some lemmas. We use standard notation, see [3, 5].

LEMMA 1. Let N be a normal subgroup of a finite p-group G. If $I = \omega(F[N])F[G]$, then $I^n = \omega(F[N])^nF[G]$. Moreover, if $\eta_i, i = 1, \ldots, t$, form a basis of the space $\omega(F[N])^n$ and $\{1 = g_1, \ldots, g_s\}$ is a right transversal for N in G, then $\eta_ig_j, i = 1, \ldots, t, j = 1, \ldots, s$, form a basis of the space I^n.

The proof of the first part is by an easy induction on n. The second part is obvious.

For any finite p-group G let $\{M_i(G)\}$ be the Brauer-Jennings-Zassenhaus M-series of a p-group G defined by $M_1(G) = G$ and for $n \geq 2$

$$M_n(G) = (M_{n-1}(G), G) M_i(G)^{p^i},$$

where i is the smallest integer satisfying $ip \geq n$.

LEMMA 2. If G' is the commutator subgroup of G, then the factor groups $M_i(G')/M_{i+1}(G')$ for all i are determined by $F[G]$.

PROOF. By proof of [5, 14.2.7] the factor groups $M_i(G')/M_{i+1}(G')$ are determined up to isomorphism by

$$f_j = \dim_F \omega(F[G'])^j/\omega(F[G'])^{j+1} = \frac{1}{|G: G'|} \dim_F \omega(F[G'])^j F[G]/\omega(F[G'])^{j+1} F[G].$$

Since $\omega(F[G'])F[G]$ as an ideal generated by the subspace $[F[G], F[G]]$, is determined by $F[G]$ and $|G: G'| = \dim_F F[G]/\omega(F[G'])F[G]$ the result follows from Lemma 1.

Received by the editors October 30, 1986 and, in revised form, August 27, 1987.

By the proof of [5, 14.2.7ii] we obtain then

COROLLARY 1. If \(G' \) is cyclic, then the isomorphism class of \(G' \) is determined by \(F[G] \). In particular, if \(F[G] \cong F[H] \) and \(G' \) is cyclic, then \(H' \) is cyclic too.

Remark now that if \(G \) is a metacyclic \(p \)-group, then by the inclusion \((\mathcal{M}_n(G), G) \subset \mathcal{M}_n(G)^{(p)} \) we have \(\mathcal{M}_2(G) = G^{(p)} = \mathcal{M}_3(G) = \cdots = \mathcal{M}_p(G) = \cdots = \mathcal{M}_{p+1}(G) = \cdots = \mathcal{M}_{p^2}(G) = G^{(p^2)} \) and so on. Thus we have

COROLLARY 2. If \(G \) is a metacyclic \(p \)-group then the exponent of \(G \) is determined by \(F[G] \).

LEMMA 3. If \(G \) is a finite \(p \)-group with \(G' \) cyclic, then for every integer \(n \geq 1 \)

\[
\omega(F[G']^{(p^n)})F[G] = (\omega(F[G'])F[G])^{p^n}.
\]

PROOF. Let \(G' = \langle g \rangle \). Elements \(g - 1, (g - 1)^2, \ldots, (g - 1)^{\omega(g) - 1} \) form a basis of \(\omega(F[G']) \) [5, 3.3.3]. So \(\omega(F[G'])^{p^n} \subset \omega(F[G']^{(p^n)})F[G] \subset \omega(F[G'])^{p^n}F[G] \) and then by Lemma 1 \(\omega(F[G']^{(p^n)})F[G] = (\omega(F[G'])F[G])^{p^n} \).

Let now \(\Omega_1(G) = \{ x \in G | x^{p^2} = 1 \} \). We shall say that \(G \) is a \(p_1 \)-group iff \(x^{p^2} = 1 \) implies \((xy^{-1})^{p^2} = 1 \) for all \(x, y \in G \). Let \(\omega_1(F[G]) \) be the ideal of \(F[G] \) generated by all elements \(a \in F[G] \) satisfying \(a^{p^2} = 0 \).

LEMMA 4 [1, LEMMA 3]. If \(G \) is a \(p_1 \)-group and for all \(g \in G \) \(g^{p^2} \in Z(G) \), then \(\omega_1(F[G]) = \omega(F[H])F[G] \), where \(H = \Omega_1(G) \).

PROOF OF THE THEOREM. Let \(F[G] \cong F[H] \), where \(G \) is metacyclic \(p \)-group and \(p > 3 \). First we show that \(H \) is metacyclic. Let \(\overline{G} \) and \(\overline{H} \) be the factor groups \(G/G' \) and \(H/H' \) respectively. Since by Lemma 3 \((\omega(F[G'])F[G])^{p} = \omega(F[G']^{(p)})F[G] \) we have

\[
F[\overline{G}] \cong F[G]/(\omega(F[G'])F[G])^{p} \cong F[H]/(\omega(F[H'])F[H])^{p} \cong F[\overline{H}]
\]

The group \(\overline{G} \) satisfies the assumption of Lemma 4, so

\[
\omega_1(F[\overline{G}]) = \omega(F[\Omega_1(\overline{G})])F[\overline{G}].
\]

By the obvious inclusion \(\omega(F[\Omega_1(\overline{H})])F[\overline{H}] \subset \omega_1(F[\overline{H}]) \) we have then

\[
|\overline{H}/\Omega_1(\overline{H})| = \dim_F F[\overline{H}]/\Omega_1(\overline{H}) = \dim_F F[H] - \dim_F \omega(F[\Omega_1(\overline{H})])F[\overline{H}]
\]

\[
\geq \dim_F F[H] - \dim_F \omega(F[H]) = \dim_F F[\overline{G}] - \dim_F \omega_1(F[\overline{G}])
\]

which implies \(|\Omega_1(\overline{H})| \leq |\Omega_1(\overline{G})| = p^2 \). Hence, since \(\overline{H} \) is nonabelian and \(p > 2 \), \(|\Omega_1(\overline{H})| = p^2 \). Now, by [3, III.11.6] \(\overline{H} \) is metacyclic. But we have assumed that \(p > 3 \) and from Corollary 1 \(H' \) is cyclic, that is \(H^{(p)} = \Phi(H')^{\gamma_3}(H) \). So by [3, III.11.3] \(H \) is metacyclic too. The fact that \(H \) is metacyclic and more, that \(G \cong H \), one can obtain also from [6, Theorem 6.25].

Now let \(G \) be generated by elements \(x, y \) with defining relations

(1) \(x^{p^m} = 1, \quad y^{p^n} = x^k, \quad y^{-1}xy = x^r \)

with suitable integers \(m, n, k \) and \(r \) [3, III.11.2]. The isomorphism of \(G \) and \(H \) we prove by induction on the order of \(\langle x \rangle \cap \langle y \rangle \). So assume first that the generators \(x, y \) of \(G \) satisfy

(2) \(x^{p^m} = 1, \quad y^{p^n} = 1, \quad y^{-1}xy = x^r \),
THE ISOMORPHISM QUESTION

41

that is \(\langle x \rangle \cap \langle y \rangle = 1 \). We proceed by induction on the order of \(G' \). The case
\(|G'| = 1\) is known [5, 14.2.7ii]. Since \(H \) is metacyclic the isomorphism of \(G \) and \(H \)
for \(|G'| = p\) follows immediately from [1, Lemma 4 and Corollary of Theorem 2].
This is also the special case of [6, Theorem 6.25]. Let us assume now that \(|G'| = p^s\),
where \(s > 1 \). We have \(\Omega_1(G') = G'(p^{s-1}) \), so by Lemma 3
\[F[G/\Omega_1(G')] \simeq F[G]/(\omega(F[G'])F[G])p^{s-1} \]
\[\simeq F[H]/(\omega(F[H'])F[H])p^{s-1} \simeq F[H/\Omega_1(H')] \]
and by the induction \(G/\Omega_1(G') \simeq H/\Omega_1(H') \). Since \(G/\Omega_1(G') \) is generated by
\(\bar{x} = x\Omega_1(G') \), \(\bar{y} = y\Omega_1(G') \) with relations
\[\bar{x}p^{m-1} = 1, \quad \bar{y}p^n = 1, \quad \bar{y}^{-1}\bar{x}\bar{y} = \bar{x}^r \]
there exist generators \(u, v \) of \(H \) such that
\[u^{p^m-1}, v^{p^n} \in \Omega_1(H'), \quad v^{-1}uv \equiv u^r \pmod{\Omega_1(H')} \]
Let \(h \in \Omega_1(H') \) be such an element that \(v^{-1}uv = u^rh \), and suppose \(\Omega_1(H') \) is
not a subgroup of \(\langle u \rangle \). Then \((u, v) = u^{-1}v^{-1}uv = u^{r-1}h \) is a generator of \(H' \)
and \((u, v)^p = (u^{r-1}h)^p = u^{p(r-1)} \). But \(H' \) is cyclic and \(|H'| > p \) so that we have
\(\Omega_1(H') \leq \langle (u, v)^p \rangle = \langle u^{p(r-1)} \rangle \leq \langle u \rangle \). A contradiction. Thus \(\Omega_1(H') = \langle u^{p^m-1} \rangle \)
and \(v^{p^n} \in \langle u^{p^m-1} \rangle, v^{-1}uv = u^{r+tp^{m-1}} \) for suitable \(t \). Suppose that \(v^{p^n} \neq 1 \). If
\(n > m \), then \(\exp(G) = p^n < p^{n+1} = \exp(H) \) which by Corollary 2 is impossible.
If \(n < m \) then one can choose an element \(u_1 \) of \(\langle u \rangle \) such that \(u_1^{p^n} = v^{p^n} \). Now
replacing \(v \) by \(v_1 = v^{u_1^{-1}} \) we have \(H = \langle u, v_1 \rangle, v_1^{p^n} = 1 \) and \(v_1^{-1}uv = v^{-1}uv \). The
isomorphism of \(G \) and \(H \) follows now from [2, Lemma 8].
Suppose now that \(x \) and \(y \) are generators of \(G \) with the defining relations (1), the
possible smallest order of \(\langle x \rangle \cap \langle y \rangle \) and \(\langle x \rangle \cap \langle y \rangle \neq 1 \). Remark that the order of \(y \)
must be greater than the order of \(x \). Otherwise, using standard considerations one
can replace \(y \) by an element \(y_1 \) such that \(\langle x, y_1 \rangle = G \) and \(\langle x \rangle \cap \langle y_1 \rangle = 1 \). Assuming
\(G/\Omega_1(G') \simeq H/\Omega_1(H') \) as above we can choose generators \(u \) and \(v \) of \(H \) such that
\(\Omega_1(H') \leq \langle u \rangle \) and
\[u^{p^m} = 1, \quad v^{-1}uv = u^{r+tp^{m-1}}, \quad v^{p^n} = u^{p^k+sp^{m-1}} \]
for suitable integers \(s, t \). If \(k < m - 1 \), then \(p^k + sp^{m-1} \neq 0 \pmod{p^m} \) and there
exist an element \(u_1 \in \langle u \rangle \) such that \(\langle u \rangle = \langle u_1 \rangle, v^{p^n} = u_1^{p^k} \) and \(v^{-1}u_1v = v^{r+tp^{m-1}} \).
So by [2, Lemma 8] \(G \simeq H \). If \(p^k + sp^{m-1} \equiv 0 \pmod{p^m} \), then \(v^{p^n} = 1 \) which
implies \(\exp(H) = p^n < \exp G \). By Corollary 2 it is impossible. This completes the
proof.

ACKNOWLEDGEMENT. I am grateful to Professor E. R. Puczyowski for his
valuable suggestions during the preparation of the paper.

REFERENCES

 619–624.
 175–182.

Institute of Mathematics, University of Warsaw, Białystok Division, Akademicka 2, 15-267 Białystok, Poland